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NATIONAL ADVISORY COMMITTEE FOR AERONAUI'ICS

TECHNICAL NOTE 3783

HANDBOOK OF STRUCTURAL STABILITY
PART III - BUCKLING OF CURVED PLATES AND SHELLS

By George Gerard and Herbert Becker
SUMMARY

Available theories and test data on buckling of curved plates and
shells are reviewed. For torsion and external-pressure loadings, the
test data are correlated in terms of linear buckling theories for both
the elastic and inelastic ranges.

The cases which exhibit a marked disagreement between linear theory
and test data include those of curved plates and cylinders under axial
compression, cylinders under bending, and spherical plates under external
pressure. These cases have been analyzed by a unified semiempirical
approach for both the elastic and inelastic ranges which is satisfactory
for analysis and design purposes.

The effects of internal pressure on buckling of elements under uni-
axial loads are discussed and data on various combined loadings are pre-
sented in interaction form.

INTRODUCTION

In Part I ("Buckling of Flat Plates,” ref. 1) and Part II ("Buckling
of Composite Elements,'" ref. 2) of this Handbook the available theories
and experimental data are in relatively good agreement. However, in the
buckling of curved plates and shells, which is treated in the present
report, there is considerable disagreement between theory and experiment
in many cases. As a consequence, considerable reliance must be placed
on semiempirical methods using theory as a guide. In order to minimize
the use of differing semiempirical approaches which have appeared in the
literature, a unified presentation of experimental and theoretical results
on buckling of curved plates and shells is attempted.

The fundamentals of the buckling behavior of curved elements are
described in the section "Physical Behavior of Curved Elements" and the
linear and nonlinear theories relating to stability of curved elements
follow in "Stability Theory of Curved Elements.  The principles presented



2 WACA TN 3783

in these introductory sections are referred to throughout the report.

The unification attempted in the various sections utilizes the principles
and theory of the above-named two sections as a guilde in establishing semi-
empirical methods where theory is deficient.

Large discrepancies between linear theory and test data have long
been known to exist for the buckling of axially compressed cylinders.
In the section "Circular Cylinders Under Axial Compression,’ three basic
concepts are used in an effort to resolve the discrepancies from a struc-
tural analysis and design standpoint. In the first, the relation between
buckling stress and cylinder-wall curvature is shown to give correlation
with the data when a semiempirical comstruction is utilized based on the
limiting data for short and for long cylinders. The transition between
these cases is guided by the results of linear theory. The second con-
cept relates to the end effects on short cylinders which result in signif-
icant increases in the buckling-stress coefficient in the transition
region.

The third concept, which applies to long cylinders, is based upon
the use of the classical equation for axial-compressive-buckling stress
of a circular cylinder utilizing a coefficient C which is a function
of r/t. Test data lie in a range of large values of r/t, for the most
part, whereas theory defines the relation between C and r/t for
relatively small values of r/t. In this report the two are shown to
coalesce, thereby providing a continuous dependence of C upon r/t.
This permits correlation of inelastic-buckling data with theory for the
pertinent plasticity-reduction factor and depicts the effect of initial
imperfections upon buckling behavior.

These concepts also are used for correlation of buckling of curved
plates in uniaxial compression and spherical plates under external pres-
sure. In addition, the data on cylinders in bending are shown to permit
unification with the semiempirical theory resulting from these concepts.

The behavior of circular and elliptic cylinders in bending is pre-
sented in the section "Cylinders in Bending," in which the concept of a
gradient effect upon buckling stress is introduced. This is applied to
the inelastic range as well as to the elastic range. In addition, the
familiar modulus of rupture is resolved into its component elements, and
instability in the inelastic range is explored in some detail.

The behavior of cylinders buckling in torsion is described in the
section 'Cylinders Under Torsion," in which test data on circular and
elliptic cylinders and on D-tubes of semicircular and semielliptic cross
section are shown to correlate reasonably well with linear theory. The
effect of internal pressure is discussed.
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Behavior of circular cylinders under external pressure is discussed
in the section with that name. Buckling of circular cylinders under
combined loadings is described in the following section, in which inter-
action curves and equations are presented for various load combinations.

The behavior of axially loaded plates curved in one direction is
discussed in the section "Curved Plates Under Axial Compression.” The
approach used for axially compressed cylinders was applied here in an
effort to correlate the data with empirical theory utilizing the various
geometric parameters of the plates. The results of this approach are
not so well defined as those for axially compressed cylinders although
the trends are comparable. Data on the effects of plasticity are com-
pared with inelastic-buckling theory for axially compressed cylinders.
Also, the effect of internal pressure on axial compressive buckling is
described.

The buckling of spherical plates under normal pressure is discussed
in the section "Spherical Plates Under Normal Pressure.' It is shown
that the unified approach used for axially compressed circular cylinders
and singly curved plates appears to form a realistic basis for analyzing
the spherical-plate test data. An analysis of initial imperfections is
presented based upon the measured geometric imperfections in the spherical
plates from which buckling test data were obtained. The relation of C
as a function of r/t was constructed from this information and is shown
to give reasonable correlation with the test results.

The sections "Curved Plates Under Shear' and "Curved Plates Under
Combined Shear and Longitudinal Compression" pertain to the buckling
behavior of singly curved plates in shear and in combined shear and axial
compression, respectively. The effects of internal pressure and plastic-
ity are discussed. The appendix summarizes the results of importance in
analysis and design in a convenient form.

This survey was conducted at New York University under the sponsor-
ship and with the financial assistance of the National Advisory Committee
for Aeronautics. ‘ ‘

SYMBOLS
An plasticity coefficients
a semimajor axis of ellipse, in.

30 initial imperfection, fraction of sheet thickness
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axial rigidity, Et /(1 - v2>

semiminor axis of ellipse, in.; also, width of curved
plate, in.

chord of circular-arc section, in.
compressive-buckling coefficient for long cylinders

bending-buckling coefficient for long cylinders

bending rigidity, EtJ / [12(1 - v2>:l, in-1b

diameter of spherical plate (chord width), in.
elastic (Young's) modulus, psi

secant modulus, psi

tangent modulus, psi

stress function for cylinders

exponent in expression for ag

depth of circular-arc section, in.

constant in expression for ag
buckling coefficient for cylinders in bending

buckling coefficient for axially loaded cylinders and
singly curved plates

buckling coefficient for hydrostatic pressure
buckling coefficient for flat plate, in general
buckling coefficient for singly curved plate in shear

buckling coefficient for cylinder or D-tube in torsion
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buckling coefficient for radial pressure on cylinder

length of cylinder or curved plate, in.

wave length of buckle axially and circumferentially as
used in expression for ap, in.

bending moment, in-lb

wave number in axial direction of cylinders and singly
curved plates

axial, circumferential, and shear loads applied to
cylinder

wave number in circumferential direction of cylinders and
singly curved plates

pressure, psi

stress ratio for bending on cylinder

stress ratio for axial compression on cylinders and singly
curved plates

pressure ratio for cylinders and singly curved plates

stress ratio for shear on singly curved plates
stress ratio for torsion on cylinders

stress ratio for axial loading, either tension or compres-
sion, on singly curved plate

radius, in.

eritical radius of curvature on section of elliptic
cylinder in bending

sensitivity factor in eXpression for ag

section modulus of circumscribed circle, nact

section modulus of circular cylinder, cu in.
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Se section modulus of elliptic cylinder, cu in.

t sheet, plate, or cylinder-wall thickness, in.

U,Up unevenness factors in expressions for ag

U, V,w displacements in x-, y-, and z-directions, in.

X dimensional factor in expression for ag, in.

X,¥,2 coordinates for circular cylinders and singly curved
plates, axial, tangential, and radial directions,
respectively

v/a elliptic cylinder parameter (eq. (36))

Z general length-range parameter for cylinders, singly

curved plates, and spherical plates

L2(l - veg>;/2/rt

N
=
0

1/2
Zy = b2<l - Ve2> / /rt

/2] |

Zg = d2(1 - v82> / /rt

= 2 - (E+[E
@ 5/01 t[Bs
B = L/A
4 gradient factor
Ye strain gradient factor
Ts stress gradient factor
€ strain, in./in.
1 plasticity-reduction factor

A buckle wave length, in.

v
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0 = (ng + 0y2 - OxOy + 5T2>

¢

X
Subscripts:
cr

emp

exp

magnification factor, Xkexp/Kemp

Poisson's ratio, vy - (vp - ve)(Eg/E)

elastic Poisson's ratio, 0.3 in this report

plastic Poisson's ratio, generally 0.5

shape factor for inelastic-bending-stress distribution
normal stress, psi

actual plastic stress at extreme fiber of cylinder in
bending

classical buckling stress of sphere under external pressure

1/2

bending modulus of rupture, M/sc

shear stress, psi
cylindrical coordinate

curvature

critical (buckling stress)

empirical

experimental

edge; also, elliptic cylinder
initial

bending

compression; also, circular cylinder

in axial and btangential directions, respectively
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PHYSICAL BEHAVIOR OF CURVED ELEMENTS

‘Correlation of Test Data and Linear Theory

In Part 1 of this Handbook (ref. 1) the buckling of flat plates was
reviewed. The close correlation of experimental data on the elastic and
plastic buckling of flat plates under various types of loadings and
boundary conditions confirms the use of classical linear stability concepts
in such problems. Furthermore, it suggests that small initial imperfec-
tions unavoidably present in practical structural elements are unimpor-
tant from an engineering standpoint.

In investigating the elastic buckling of thin-wall circular cylinders,
curved plates, and thin-wall spheres, classical stability theory has been
used also. In general, however, the close correlation between theory and
test data observed for flat plates is not obtained for curved elements.

The amount of agreement varies and depends upon the type of loading and
the geometric parameters of the curved element.

The most complete test data are available for cylinders. These data
were reviewed by Batdorf (ref. 3) and were compared with a simplified
linear buckling analysis based on the use of Donnell's equations. This
set of equations as well as others are discussed in the section entitled
"Stability Theory of Curved Elements." For the purposes here, it will
suffice to compare the results of the simplified analysis with available
test data.

Representative elastic-buckling data for cylinders under axial com-
pression, torsion, and lateral pressure are shown in figure 1. It can
be observed that for compressive loading the best test data at failure
are approximately one-half of the theoretical buckling values with some
data as low as 10 percent of theory.

Furthermore, the scatter in the data is large, even on the logarithmic
plots on which the results are shown because of the large numerical range
of the parameters. Other test data on elastic buckling of curved plates
under axial compression, spheres under hydrostatic pressure, and cylinders
under bending all behave in the characteristic manner of axially compres-
sed cylinders.

For torsion loads the test data on failure of the cylinders are in
considerably better agreement with buckling theory than are those for
compression. Here too, however, the test data are consistently below
the theoretical values. In the case of buckling under lateral pressure,
the relatively small amount of test data is in good agreement with theory.

The particularly poor agreement between linear theory and tests for
axially compressed curved elements has motivated considerable theoretical
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Investigation to determine the cause of such behavior. Some investi-
gators have maintained that such elements are particularly sensitive to
initial imperfections which lead to premature failure. Others have
abandoned classical buckling concepts. By use of large-deflection theory
in conjunction with deflection functions corresponding to the experi-
mentally observed diamond pattern, 1t was found that neighboring large-
deflection equilibrium configurations exist at loads less than those of
the linear theory. It has been suggested that the small amount of energy
required to trigger the jump to the neighboring equilibrium configura-
tions can be supplied by small vibrations in the testing machine. Thus,
the compressed cylinder cannot reach the classical load and fails at a
fraction of this value.

These approaches are discussed at some length in the sections
"Stability Theory of Curved Elements" and "Circular Cylinders Under
Axial Compression.” At this point, however, it seems important to inquire
for the reasons for the apparent failure of linear theory for compressive
buckling of curved elements. In this case, large-deflection theory must
be introduced, whereas for torsional buckling linear theory provides
reasonable agreement with test data and for cylinders under lateral pres-
sure good agreement is obtained.

Postbuckling Behavior

Some explanation on physical grounds is required to indicate when
large-deflection effects may assume importance in particular buckling
problems. For such an explanation, it is logical to consider the post-
buckling behavior of various elements, since this is the region of large
deflections.

A schematic representation of the postbuckling behavior of axially
compressed columns, flat plates, and cylinders is shown in figure 2 for
both theoretically perfect elements and those containing initial imper-
fections. It is assumed that all elements behave elastically.

For the perfect column, the postbuckling behavior is essentially
horizontal in the range of Wave depth/Shell thickness values consid-
ered here (elastic effects are negligible) and buckling can follow either
the right branch (0, 1, A+) or the left (0, 1, A-). The horizontal
behavior can be attributed to the fact that, after buckling, no signifi-
cant transverse-tension membrane stresses are developed to restrain the
lateral motion and, therefore, the column is free to deflect laterally
under the critical load.

The flat plate, however, does develop significant transverse-tension
membrane stresses after buckling because of the restraint provided by the
boundary conditions at the unloaded edges. These membrane stresses act
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to restrain lateral motion and thus the flat plate is capable of carrying
loads beyond buckling as indicated by the approximately parabolic char-
acter of the stress-deflection plot of figure 2. The flat plate also

can follow either the right branch (0, 1, B+) or the left (0, 1 B-).

For the axially compressed curved plate, the effect of the curvature
is to translate the flat-plate postbuckling parabola downward and toward
the right, depending upon a width-radius parameter. For the complete
long cylinder a considerable translation occurs. Note that by shifting
the parabola to the right buckling would tend to follow the right branch
only (0, 1, C) because of the lower loads involved, with the result that
the inward type of buckling is observed for curved plates and cylinders.
This inward buckling causes superimposed transverse membrane stresses
of a compressive nature so that the buckle form itself is unstable.

As a consequence of the compressive membrane stresses, buckling of
an axially compressed cylinder is coincident with failure and occurs
suddenly (snep buckling, "oilcanning") accompanied by & considerable drop
in load. This is in contrast with the behavior of a flat plate which,
because of superimposed tension membrane stresses after elastic buckling,
can support loads in excess of the buckling load.

From figure 2 it can be observed that the behavior of elements with
small initial imperfections tends to follow closely that of the theoreti-
cally perfect elements except in the region where U/Gcr approaches 1.0.

For columns and flat plates the data for the initially imperfect element
asymptotically approach the theoretically perfect postbuckling curves for
Wall depth/Shell thickness values at which failure occurs. Thus, small
initial imperfections are relatively unimportant in these cases. For the
cylinder, however, the divergence is greatest in the region where buckling
and maximum load occur simultaneously. Consequently, initial imperfec-
tions can be expected to be of relatively great importance in this case

as reflected by the low test data and its large scatter shown in figure 1.

From this discussion, it can be concluded that the nature of the
transverse membrane stresses superimposed after buckling provides an
important clue to the discovery of cases in which large-deflection effects
are likely to be important in buckling problems.

By returning now to the data shown in figure 1, it is possible to
understand the degree of correlation between test data and linear sta-
bility theory. As discussed above, poor agreement would be anticipated
for the axially compressed cylinder since transverse compressive stresses
are superimposed when buckling occurs. For the cylinder under torsion,
the membrane stresses superimposed after buckling, transverse to the axes
of the buckles, are tensile. Therefore, large-deflection effects would
be relatively unimportant and good agreement between linear theory and
test data would be expected.
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When a cylinder buckles under lateral pressure, transverse tensile
membrane stresses are superimposed along the generators of the cylinder
and are resisted by the boundary restraints at the ends. 1In the case
of very long cylinders, this effect would be negligible and the load-
deflection characteristics would approach those of a column. Actually,
under lateral pressure, the buckling of an infinitely long cylinder is
equivalent to that of a ring. For shorter cylinders, the superimposed
membrane stresses become progressively more important, approaching those
of a flat plate as the length-radius ratio approaches zero.

The superimposed-transverse-membrane-stress states when buckling
occurs for the cases considered above, as well as for several other
‘cases, are summarized in table 1. From table 1 it can be observed that
in all cases in which significant transverse compressive membrane stresses
are superimposed when buckling occurs, there is unsatisfactory correlation
of test data with linear stability theory. For such cases only large-
deflection theory must be used. 1In all other cases, linear stability
theory should be satisfactory.

STABILITY THEORY OF CURVED ELEMENTS

From the discussion presented in the section "Physical Behavior of
Curved Elements" it is apparent that classical stability theory (linear,
infinitesimal deflections) yields satisfactory correlation with test data
when tensile (2 0) transverse membrane stresses are superimposed after
buckling. In cases in which significant transverse compressive (< O)
membrane stresses develop, the buckle form itself tends to be unstable
and. nonlinear theory (finite deflections) has been used in the attempt
to resolve the discrepancies between test data and classical buckling
theory.

It is the purpose in this section to review the mathematical tech-
niques available for the solution of linear and nonlinear problems asso-
ciated with buckling of curved elements containing no initial imperfec-
tions. The theoretical buckling load is of importance because it closely
coincides with the failure of cylinders, of wide plates of sharp curvature,
and of spheres. For plates of small curvature, buckling marks the region
in which continued application of load results in an accelerated growth
of lateral deflections which ultimately leads to failure.

In small-deflection (linear) stability theory, the deflections are
assumed to be infinitesimal. Thus, the strains are linear functions of
the displacements and therefore the stresses are also linear in displace-
ments. As a result, linear equilibrium differential equations in terms
of displacements are obtained. In Timoshenko's book on stability theory
(ref. 4), the sclutions for a large number of curved-element elastic-
buckling problems are presented. These solutions are based on a set of
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_three equilibrium equations which vary only in minor terms from those
suggested by Fligge (ref. 5). The complex geometry involved in distor-
tions of curved elements is responsible for widespread disagreement among
investigators as to the proper minor terms to be included in the strain-
displacement relationships and hence in the equilibrium equations.

By omitting terms which are of small magnitude when the circular
cross section of a thin-wall cylindrical element is distorted, Donnell
reduced the set of three equilibrium equations to a single eighth-order
partial differential equation in the radial displacement w (ref. 6).

For plastic buckling of cylindrical elements, Gerard utilized the simpli-

fied strain-displacement and equilibrium equations of Dommnell and obtained
a set of three equilibrium equations in the displacements (ref. 7). These
equations reduce to Donnell's single eighth-order equilibrium equation in

the elastic case.

In large-deflection (nonlinear) theory, the deflections are assumed
to be finite though small. They are large, however, as compared with
those of small-deflection theory. The strain-displacement relations now
include nonlinear terms and therefore the equilibrium equations in terms
of displacements are nonlinear. Donnell, in his approximate analysis of
the effects of initial imperfections on the buckling behavior of compres-
sed cylinders, derived a large-deflection equilibrium equation (ref. 8)
which is an extension of that derived by Von Kdrmdn for large deflections
of flat plates (ref. 9). By use of a corresponding energy formulation,
Von Kérmén and Tsien investigated the postbuckling behavior of compres-
sed circular cylinders (ref. 10). They discovered that neighboring large-
deflection equilibrium configurations existed at loads considerably below
those of classical stability theory. fThey formulated an energy criterion
of buckling based on this behavior which yields buckling loads in reason-
able agreement with test data.] ek a0.

Linear Stability Theory for Cylindrical Elements

Donnell's simplified equations for thin-wall circular cylinders
(ref. 6) have been used with a considerable degree of success in buckling
problems. The linear stability theory is based on the following rela-
tions between the displacement derivatives and the middle-surface strain
variations and curvature changes that occur during buckling of circular
cylindrical elements:
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€1 = ou/dx
en = (dv/r 30) + (w/r)

i ,w
3 = 2(% ] * Bx>

> (1)

Xl = 82W/5X2
Xo = 3Pw/r2d6°
X3 = d°w/r dx d0

7

By use of appropriate stress-strain relations, equations relating
the incremental forces and moments with the displacement derivatives can
be dérived. Upon substituting the latter into the simplified equilibrium
equations, a set of three equations in terms of the displacements and
their derivatives is obtained.

Using deformation plasticity theory, Gerard derived a set of equilib-
rium equations applicable to plastic buckling of thin-wall circular
cylinders (ref. 7). In the interest of generality, these equations are
presented in equations (2) to (4) and are then reduced to Donnell's
eighth-order equation for elastic buckling.

Ay

3u M3 Bgu + Az 52u M3 82v + <512 + f29 82V _

axe 2 r Ox 08 i r2882 L axe 2 h/r ax o6

A 2 A A
23 av+128w_25 awzo (2)

b 2392 2 1 Ox L .2yg
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b e ' L ) e
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axt r x50 r29x236°2 rdx 363 rHoet
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r2882

The plasticity coefficients are defined as follows:

Al = 1 - (@UXE / LL>
A2 =1 - (@Uyg )4—)
Ag = 1 - oT?

ABl = A15 = adyT

A52 = A25 = aGyT
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where:

o3 = (0X2 + OyT - OOy + 572>l/2
The axial rigidity is:
B = UEgt[3 )
The bending rigidity is:
D= Est5/9 (6)

In the elastic region, o = O and, therefore, A} = Ap = A5 = Ap =1
and Az = Apz = O. By replacing the definitions of equations (5) and (6),

which are for a fully plastic plate, with B = Et/(l - ve2> and

D = Et5/i2<l - veg), respectively, and replacing the coefficient 1/2 by

Ve, equations (2) to (4) reduce to the following elastic relations:

%0, Lo Ve 3% ltve ¥ Yedw_ g (7).
32 2 2302 2 1 dx 06 r Ox
62v 1 - ve Bev 1+ v 62u " Ow

+ + = 0 (8)
2302 2 32 2 r Ox 06 230

2 2 2
Dv“w+13ve-§3+ av+zk+NXé—-Y-+2ny——a—y——+Nyaw+p=O
T x Trdd 1) 32 r Ox 08 2362
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By suitable manipulation of equations (7) to (9), Donnell was able
to obtain the following single equation in terms of the radial displace;
ment (ref. 6):

L 2 2 2
Et 0w 0w w o w
DV8'W+;—é--——i+vLLNXaX—2+2nym+Nyr—2—a—e—§+P =0 (lO)

X

The relationships among the other displacements are

= -V + (11).

85w ) 55w
rgaxeae r”ae5

P = (2 + v) (12)

It is to be noted that by letting l/r = 0 and replacing r 96
by dy, equations (L), (9), and (10) reduce to the governing equations
for flat plates.

Boundary Conditions

The usual boundary conditions for flat plates discussed in Part 1
(ref. 1) apply directly to curved plates. However, a complete cylinder
has only two boundaries (at the ends) instead of the four of a rectangular
plate. Thus, for the cylinder, two of the four sets of boundary condi-
tions are replaced by the condition that the displacements are cyclic
functions of the angle 6 with a cycle length of Zrr.

" For cylinders which can be classified as long, the boundary condi-
tions at the ends have a negligible influence on the buckling stress.
At the other limit, short cylinders approach flat plates in their behavior
and, consequently, boundary conditions are of considerable importance in
such cases.

Appropriate boundary conditions on the displacements, u, Vv, and W
can be handled in a straightforward menner in cases in which equations (2)
to (4) or (7) to (9) are used. However, boundary conditions on the dis-
placements u and Vv cannot be handled directly when equation (10) is
used since this equation is in terms of the displacement w only. This
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situation is not serious, however, since certain conditions on u and Vv
are implied which correspond to those often occurring in practical
construction.

Donnell's eighth-order differential equation, equation (10), requires
eight boundary conditions for a unique solution. The usual boundary con-
ditions of simple support or clamping impose a total of only four boundary
conditions (two at each end) on the displacement w. However, by use of
equations (11) and (12), four additional boundary conditions on the dis-
placements u and v are implied.

Batdorf has discussed this problem at some length (ref. 3) and has
concluded that the substitution of a double-sine-series expansion for w
into Donnell's equation corresponds to the following boundary conditions:

(a) Each edge of the cylinder or cylindrical plate is simply sup-
ported (Wé = 0, <62w/8y2>e = O>.

(b) Motion parallel to each edge during buckling is prevented
entirely (ve = 0).

(c) Motion normal to each curved edge in the plane of the sheet
oceurs freely (ue # 0O).

Such boundary conditions on u and Vv are appropriate to cylinders or
cylindrical plates bounded by supporting members such as deep stiffeners
or ribs. Such members are generally stiff in their own planes but may
be readily warped out of their planes.

By comparing solutions using Donnell's equation with more exact
solutions for which warping is not permitted (u = 0), the effects of
the implied boundary conditions can be evaluated. Batdorf has shown
that generally the effect on the buckling stress of preventing free
warping normal to the curved edges of a cylinder or cylindrical plate
is negligible (ref. 11).

Solutions Based on Donnell's Equation

Although solutions based on sets of three equilibrium equations such
as equations (7) to (9) were known, Batdorf demonstrated the simplicity
of using Donnell's equation by rederiving several solutions for simply
supported cylinders in a unified manner (ref. 3). The method of solu-
tion used in several of these problems is demonstrated below.
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For more complicated boundary conditions, such as clamped edges, a
slight modification of Donnell's equation permits solution by use of the
Galerkin method. This procedure has been used by Batdorf and his col-
laborators to solve the compressive buckling of cylinders and curved
plates with clamped circumferential edges and to analyze curved plates
under shear and combined loading.

Case 1. Axially compressed cylinders and curved plates.- For a
cylinder, a solution of equation (10) which satisfies the boundary con-
ditions of simple support is

W = Wo sin %? sin 9%5 (13)

where A = ﬂr/n and is the half-wave length of the buckles in the cir-
cumferential direction. Upon substituting equation (13) into equation (10)
and letting Ny = Nxy = O for this case, the compressive-buckling coef-

ficient is

2
(me N Be) 1277 “n°
ko = + (k)
¢ ' 2
m2 a(m2 + p2)
where
B = L/A
1/2
7y = (Lg/rt> [(1 - ve2) }
The compressive-buckling stress is
2
kcﬁl‘[gE t)
Ocr,, = — (15)
e 12(a - ve2)<L
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The critical value of k. can be found by suitable minimizations of
equation (14). For long cylinders

1/2
_He,

K 1, = 0.7027, (16)
22

For short cylinders (Z, < 2.85), the critical value of k, 1is determined

by substituting the limiting values of B =0 and m= 1 into equa-
tion (14). Such results are shown as the theoretical line in figure 1(a).

By substituting equation (16) into equation (15), the classical
buckling stress for a long axially compressed cylinder is obtained:

2

-1/2
) " Et/r = 0.68(t/x) (17)

Gcrc - 5(1 - Ve

These results can be applied to the compressive buckling of a long
simply supported cylindrical plate by a change in certain of the variables.
For a long plate the unloaded-edge boundary conditions are of importance
and consequently the compressive-buckling coefficient becomes

2 252
2 4+ @2 127y,2p
S ) A L (18)

where n replaces B 1in equation (1), B = b/% and replaces m, and

Z, = <b2/rt)(l - v62)1/2

o

cr

¢ 101 - ve2> P
\

Upon minimizing equation (18), the solution given by equations (16)
and (17) is obtained for wide, long, cylindrical plates. For narrow,
long, curved plates, the critical value of k.  is obtained by substituting

n =1 into equation (18) and minimizing with respect to B.
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For the limiting value of Zp = O, equation (14) reduces to the

value corresponding to an infinitely wide plate column and equation (18)
reduces to a long flat plate. For values of Zy at which the element

can be considered long, the buckling of the cylindrical plate and cylinder
are identical according to linear theory.

Case 2. Cylinders under lateral and hydrostatic pressure.- For
hydrostatic loading, 2Nx = Ny and NXy = 0 in equation (10). Upon

substituting equation (13) into equation (10), the following value for
the buckling coefficient can be determined:

+ (19)

The terms B and Z, are defined according to equation (14) and.

2

kn<E 2

Ocr.. = P E> (20)
P 12(1 - veE) L

A minimum value for kp 1s obtained when m = 1 and, therefore, equa-
tion (19) reduces to

) 2
ky = 1+ 8?) + L (21)
Pl g 4 2L, a2
StET o« (1 + B > <§ + B >

The fraction 1/2 in the denominators of each term of equation (21)
reflects the fact that the axial stress is one-half the circumferential
stress in hydrostatic loading. For the case of lateral pressure only,
the axial stress is zero and, therefore, equation (21) reduces to

2 2
2 127
ky = L+g2) - (22)

B2 p2(1 + p2)°

The critical values of ky as a function of Zy are shown in figure l(c).
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Nonlinear Stability Theory for Cylindrical Elements

As discussed at the beginning of this section on the stability of
curved elements, nonlinear theory has been used in attempts to resolve
the large discrepancies between buckling loads based on linear stability
theory and test data for certain cases. These cases include cylinders
and cylindrical plates under axial compression and spheres and spherical
plates under external pressure.

The difference between linear and nonlinear theory appears in the
strain-displacement relations. By virtue of finite deflections, for
nonlinear theory additional terms involving derivatives of the radial
displacement w are included in the relations given by equations (1)
for linear theory:

€1

(du/dx) + [(aw/axﬁ/ 2}

(23)

V

€2

Lo, o), 10 o
> 2\r 36  Ox 2 90x r 00

The curvature relations remain the same as in the linear case and are
given by equations (1). It is to be noted that equations (23) are valid
for small finite deflections only. For larger deflections, additional
terms are required in the strain and curvature relations. .

(dv/r 38) + (w/x) + [}Bw/r 88)2/%}

By use of the stress-strain relations and equilibrium equations used
previously in the linear theory, the following two governing equations
in terms of a stress function ‘F result: ’

Hr/E = (3% fox dy)° - <a2w/ax2) (aEW/ay-?) - (1/r)(32w/ax2) (24)
The cquilibriun equstion for p =0 is
o = o % /ay2j <ng/5x2> P <a2F/ax 8}[) <52w/5x a;,j +
12202 [(a%/aﬁ) ; <1/r>] (25)
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It is extremely difficult to obtain an exact solution of equations (2L)
and (25). As an approximation, a function for w 1s chosen which
contains undetermined parameters and which corresponds approximately to
the wave form observed experimentally. By use of equation (24) the middle
surface stresses may be determined. Finally, by use of suitable minimum-
energy considerations, the undetermined parameters may be ascertained.
It is to be noted that equation (25) is not used in this method of
solution.

Energy Criterion of Buckling

Von Kdrmén and Tsien used nonlinear stability theory to investigate
the large-deflection behavior of an axially compressed circular cylinder
(ref. 10). As a result, they discovered finite-deflection equilibrium
configurations at loads considerably below the classical buckling lcad
of linear theory. It was postulated that before the classical buckling
load based on infinitesimal disturbances could be reached, finite dis-
turbances in the form of random impulses, unavoidably present during the
loading processes, trigger the jump to the finite-deflection equilibrium
configurations. Tsien further investigated the details of how this Jjump
occurs and formulated the "energy criterion” of buckling or the existence
of the "lower buckling load" as contrasted with the "upper buckling load"
of classical theory (ref. 12).

The energy criterion of buckling depends to some extent on the type
of loading system employed. As one limit, a controlled-deformation type
of rigid testing machine can be considered in which the jump to finite
deflections occurs at a constant value of end shortening. As the other
limit, a dead-weight or controlled-load type of testing machine can be
considered in which the jump occurs at a constant value of load. Most
likely a Jump pattern would lie between these two limits, depending upon
the rigidity of the actual machine and the details of the loading system.

Consider now the large-deflection behavior of an axially compressed
cylinder in a controlled-deformation type of testing machine. In fig-
ure 3 the results of a large-deflection analysis are shown schematically
with both average stress and strain energy plotted as a function of the
controlled variable end shortening. According to classical theory, the
cylinder under loading follows the path OBA and buckles at A. From the
strain-energy diagram, however, once point B has been reached, less strain
energy 1s required to follow the path BD (the finite-deflection equilibrium
configuration for the buckled cylinder) than to follow the path BA (unbuck-
led equilibrium configuration). Thus, Tsien contended that, because of
finite disturbances, the jump to the large-deflection equilibrium config-
uration occurs along path BC at constant end shortening (ref. 12). The
buckling load according to the energy criterion is thereby reduced to
approximately one-half of the classical value.
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In a controlled-load type of testing machine, the loading force can
move during theé buckling process and, therefore, the total potential
energy of the system must be considered. In figure 3(b) the end short-
ening and total potential energy are shown schematically as a function
of average stress for this case. At point B, less energy 1is required
to follow the path BD than to follow the path BA. Therefore, the jump
oceurs at constant average stress along path BC and the buckling load
determined by the energy criterion is approximately one-third of the
classical wvalue.

In both figures 3(a) and 3(b) the shaded areas ABE represent the
small additional energy which is presumably supplied by the finite dis-
turbance necessary to trigger the jump. The shaded areas EFC represent
the energies released by the cylinder after passing point E so that the
net change in energy is zero. It can be observed that the point F cor-
responds to the minimum value of end shortening or average stress at
which a jump can occur.

CIRCULAR CYLINDERS UNDER AXTAL COMPRESSION

Certain of the general background material relating to the behavior
and theory of the buckling of circular cylinders under axial compression
have been presented in the sections entitled "Physical Behavior of Curved
Flements" and "Stability Theory for Cylindrical Elements.” This material
forms an essential adjunct to the discussion presented in the present
section.

Because of the essentially nonquentitative character of the avail-
able theories on buckling of circular cylinders and curved plates under
axial compression, cylinders under bending, and spheres and spherical
plates under pressure, a much greater reliance must be placed on the use
of test data than is usual in buckling problems. By using the various
theories as a guide, an approach toward a unified treatment of test data
on the aforementioned elements has been attempted.

In the present section, circular cylinders under axial compression
are treated. Semiempirical relations established for these cylinders
are extended to cylinders under bending in the section "Cylinders Under
Bending," to axially compressed curved plates in the section "Curved
Plates Under Axial Compression,' and to spherical plates under pressure
in the section "Spherical Plates Under External Pressure.



ol NACA TN 3783

Historical Background

In the period before 1934 theoretical investigations into the
buckling stress of an axially compressed circular cylinder were limited
to the use of linear theory. Attempts were made to obtain correlation
of theory with the existing test data, primarily furnished by Robertson
(ref. 13) and by Lundquist (ref. 14), by employing expressions for experi-
mental buckle wave shapes in a theory derived in general form by Southwell
(ref. 15). Details of this early work can be found in reports by Lundquist
(ref. 14) and Donnell (ref. 8), and in the book by Timoshenko (ref. L).
In 1947, Batdorf, Schildcrout, and Stein employed linear theory as a guide
and constructed empirical curves using the data of several of the early
investigators (ref. 16). By this means they were able to accentuate the
dependence of the buckling coefficient for long cylinders upon r/t,
which was discussed in 1934 by Donnell (ref. 8).

In reference 8, Donnell postulated that initial imperfections were
responsible for observed experimental buckling stresses which were low
when compared with those from linear theory and derived the large-
deflection compatibility equation for shells. Since then the classical
linear approach to this problem has been virtually abandoned. An inves-
tigation of the postbuckling behavior was made by Von Kérmgn and Tsien
(ref. 10), who derived a family of curves of stress as a function of end
shortening by use of the large-deflection compatibility equation derived
by Donnell together with equations for the energy of the shell and an
assumed deflection function representing the diamond buckle pattern. In
order to determine the buckling load, an energy criterion was used to
replace the classical definition. In obtaining a solution to their equa-
tions they assumed values for some of the parameters of the system of
equations, instead of minimizing the work energy with respect to all the
parameters. This latter approach was made by Leggett and Jones (ref. 17),
who found that the family of curves derived by Von Kdrmdn and Tsien became
a single curve unique for a specific material.

Through further investigation, Tsien developed the energy criterion
of buckling which, for a long circular cylinder, leads to a specific value
for the buckling coefficient C equal to 0.375 in the buckling-stress
equation Ogp = CET/r (ref. 12). Furthermore, by this approach, Tsien
showed that this value applies to a specimen loaded in a perfect controlled-
deformation type of testing machine. The buckling stress will be lower for
actual machines or for a controlled-loading type of testing machine. Fur-
ther work has been done by Michielsen (ref. 18) and Kempner (ref. 19) on
the postbuckling behavior in an end-shortening range in which plasticity
effects probably are of importance.

Donnell and Wan (ref. 20) more recently refined the initial-
imperfection concept developed by Donnell (ref. 8). Their results indi-
cated that the sensitivity of axially compressed cylinders to initial
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imperfections is associated with the fact that these imperfections usually
are of the same size as the relatively small buckles generated at critical
load. They also defined, theoretically, the relationship between C

and r/t in terms of an unevenness factor U which reflects the initial

imperfections in the shell.

The theoretical work, for the most part, has been confined to the
elastic range, as was a large portion of the experimental data. However,
Osgood (ref. 21), Moore and Holt (ref. 22), and Moore and Clark (ref. 23)
performed tests on compressed cylinders at stresses beyond the proportional
limit. Bijlaard (ref. 24) and Gerard (ref. 7) derived plasticity-reduction
factors to be used for such a case. Bijlaard extended his inelastic-flat-
plate approach to cylinders, whereas Gerard rederived the cylinder equilib-
rium equations using the effects of plasticity in combination with an
assumed buckling-stress coefficient of 0.6. In this manner he was able
to obtain good correlation with test data.

Buckling Behavior

The buckling behavior of an axially compressed circular cylinder
may be classified into four ranges of behavior, as shown in figure k.
"Short" cylinders tend to behave as wide plate columns with sinusoidal
buckles, whereas "long' cylinders buckle in a characteristic diamond
pattern. These two types of behavior define the limits of local buckling.
For cylinders with lengths between these extremes, defined here as the
"transition" range, there appears to be an interaction between the plate
sine-wave buckle pattern and the cylinder diamond pattern. At the short
limit, the effects of the supports and rotational restraints at the ends
of the cylinders are most marked.

The buckle patterns for these ranges are shown in figure 5 together
with a schematic cylinder-buckling curve covering the three regions men-
tioned above. The fourth region pertains to "very long" cylinders in
which the ratio of length to radius is so large that primary instability,
or Euler buckling, occurs unaccompanied by local buckling. The action
of a column, which corresponds to very long cylinders, is well known;
and flat-plate buckling, which corresponds to that of short cylinders,
has been examined in reference 1. The investigations described in this
section are confined to the transition and long ranges of the cylinder.

In an attempt to clarify the significance of the test data, and,
correspondingly, to clarify cylinder buckling behavior under axial com-
pression, the work of Batdorf, Schildcrout, and Stein (ref. 16) has been
amplified in this report. By use of available theoretical data for long
cylinders, the relationship between the buckling coefficient C and the
parameter r/t has been extended to low values of r/t which are well
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within the inelastic range. Furthermore, in the transition region where
length effects are important, test data on ko as a function of Zg

have been shown to exhibit cusps associated with integer wave forms
according to expectations based upon theory.

Long-Cylinder Range

Tn the section "Physical Behavior of Curved Elements" a criterion
was . suggested for determining the applicability of linear theory to shell-
buckling problems. Axial compression, which generates compressive mem-
brane stresses in the cylinder after buckling, was shown to require con-
sideration of large-deflection behavior. Such investigations have been
confined to long cylinders because the diamond-buckle-pattern deflection
functions which are assumed in the energy equations do not satisfy the
end boundary conditions. Furthermore, test data show that for long cyl-
inders the buckling stress is independent of the boundary conditions.
The theory is discussed in the section "Stability Theory of Curved
Elements, in which both the energy-criterion and the initial-imperfection
approach are described.

The empirical correlation for long cylinders performed by Batdorf,
Schilderout, and Stein, in which ke is plotted as a function of 7,

for various values of r/t (ref. 16), clearly depicts the dependence
of C upon r/t in the transition and long ranges. This is a signif-
icant step in that it demonstrates the existence of order in the data
where before there seemed to be nothing but wide scatter when it was
interpreted from the standpoint of available theoretical data.

Empirical data on the values of C were obtained by drawing curves
through the test points plotted in the form of ke as a function of Zj,

for the specific ranges of r/t shown in figure 6. At large values of
71, these curves were virtually straight lines at unit slope when plotted

on logarithmic plotting paper. Thus they defined an expression for
buckling stress in this range equivalent to the classical equation,
except for the dependence of C upon r/t as shown in figure 7 instead
of a constant value of C = 0.6.

The empirically derived curve of C as a function of r/t for long
cylinders is shown in figure 7T together with the theoretical curves of
Donnell and Wan (ref. 20) for several values of the unevenness factor U.
The latter is related to the initial imperfections of the cylinder. It
may be seen that the curve for U = 0.00025 merges smoothly with the
empirical curve of Batdorf, Schildcrout, and Stein (ref. 16), while all
theoretical curves converge at a very low r/t value to a value that
approaches the classical value of 0.6 as an upper limit.
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It is evident that a cylinder with a low r/t value will probably
buckle inelastically. The application of figure 7 to calculation of
Inelastic-buckling stresses is discussed below.

Transition Range

At the short-cylinder limit, the buckling stress under axial com-
pression depends upon L/t, since only one-half wave forms in the axial
direction. For long cylinders in which boundary conditions are unim-
portant, the effects of initial imperfections are considered to be solely
a function of r/t although this is probably a considerable oversimpli-
fication. In the transition region where the number of integer wave forms
changes as suggested in figure 5, the buckling stress is written in the
functional form

Oor = £(Z1,r/t,L/t) (26)

Since Z1, 1is a function of length, and since linear theory predicts
changes of wave number with length, there is a basis for expecting cusps
in the empirical data as the wave number changes by integral values in
the transition region. Since there appears to be little possibility of
establishing a completely theoretical variation, a rather simple semi-
empirical approach has been adopted herein.

Two basic data are selected in this development; the flat-plate-
buckling coefficient at Zy, = 0, and the straight line drawn through the

logarithmic plot of ke as a function of Zg at large values of this

parameter. A transition curve is then fitted to these data using linear
theory as a guide. Several types of transition have been suggested by

the results of investigations on the buckling of axially compressed curved
plates. However, the simplest transition, which matches the linear theory
in the special case of C = 0.6, is obtained (see section entitled "Sta-
bility Theory of Curved Elements') from the expression for ke presented

by Batdorf (ref. 3):
ke = kpp + <122L2 ﬂukpl> (27)

When this relation is modified to account for the effect of r/t,

ke = kpy + l§0.581ch>%/kpl (28)
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This becomes the flat-plate-buckling coefficient at Zy = O and is
tangent to the curve ke = 1.16ECZL. The complete buckling-coefficient

curve is shown in figure 5.

One of these complete curves has been drawn for each value of r/t
for which the data of Batdorf and his collaborators (ref. 16) apply
(fig. 6), utilizing the values of C obtained from figure 7. It may be
seen that the data rise above the curve in the region of the transition
in each case. The magnification ratio u of the test value of ke to

the theoretical value from the curve for the corresponding values of Zy

appears as a function of Zy, 1in figure 8. These individual curves were

also plotted together in figure 9, in which the cusps are clearly evident.
The highest peak occurs at Zy, = 35, approximately, with a second peak at

about 650. The data indicate possible additional cusps at larger values
of Zj,. However, the average of the data appears to fall below the unity

line. The explanation for this may be Tound in figure 6 in which it is
seen that the lines for ke = 1.162CZL 1ie above the test points in some

cases.

The reason for the presence of the peaks presumably lies in the
interaction between the sine-curve-deflection shape of the short plate
and the diamond buckle pattern of the intermediate-length cylinder. The
transition from one to the other as the cylinder length increases is
shown in figure 5, in which both r and t are assumed to be constant.
When the cylinder is short, the buckle pattern is that of a wide-plate
column in agreement with theory. The diamond buckle pattern is known to
prevail for long cylinders, as may be seen from photographs of buckled
cylinders contained in the reports of Lundquis?t (ref. 14) and Donnell
(ref. 8). In the transition range the competition between these wave
forms is the most evident basis on which to explain the presence of the
peaks. The cylinder 1s long enough to permit diamond buckles to form
and yet is short enough for the end boundary conditions to influence the
details of this pattern.

Numerical Values of Buckling Stress

The elastic-buckling stress for cylinders in the short, transition,
and long ranges may be determined from the equation

ka1t 2EL2
O = - 5 (29)
12‘(1 - Ve >L2
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using the value of ko obtained from figure 6 for the appropriate values
of r/t. '

For long cylinders the modified form of the classical buckling-stress
expression,

Gor = CEt/r (30)

may be used, in which C 1is obtained from figure T.

It should be noted that the buckling'coefficient for Zj = O applies

to cylinders clamped along the edges. For any other value of edge restraint
a new set of design curves may be drawn using the pertinent plate-buckling
coefficient and the scheme depicted in figure 5, which is perfectly gen-
eral and applies to any set of edge restraints. Construction of the cusps
presents some problem, since all of the test data used to construct the
curves of figure 6 pertain to clamped edges only.

Plasticity-Reduction Factor

As one aspect of a unified approach to the computation of inelastic-
buckling stresses in cylinders, Gerard utilized the limiting value of
C = 0.6 (ref. 7) in conjunction with the equilibrium equations of Donnell
(ref. 8) and the inelastic approach used by Stowell for flat plates
(ref. 25). It was found that the plasticity-reduction factor for axial
compression in the local-buckling range is

) e (31)

| n = (Et/ES>l/2<ES/E> (1 - Ve2%/<l e

Although good agreement exists between this theory and test data, improved
correlstion occurs when C is obtained from figure 7 instead of using
0.6. The correspondence is shown in figure 10. For 7075-T6 aluminum
alloy, the lack of agreement in the yield region indicates a need for

more test data before a recommendation can be made for 7 in this range.
The theory is seen to be adequate at stresses in the plastic range.

For analysis of long cylinders, plastic-buckling curves are pre-
gsented in figure 11, in which

€op = Ct/r : ' (32)
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In the initial-imperfection interpretation of cylinder behavior, the
classical value of C = 0.6 is approached as an upper limit as shown in
figure 7. Furthermore, a simple geometrical construction based upon the
energy criterion also suggests that the classical buckling coefficient
should be approached as an upper limit at large plastic strains. In
addition, it is experimentally observed that axisymmetric buckle patterns
form in cylinders with small values of r/t which buckled well in the
inelastic range.

In figure 12, the large-deflection unloading curve, which is always
elastic, has been attached, at a large strain, to the schematic stress-
strain curve for a structural alloy. If the cylinder is assumed to be
loaded in a rigid controlled-deformation type of testing machine, then
the vertical line on the figure defines the energy balance on the elastic
unloading curve.

It is seen from figure 12 that the vertical line intersects the
loading curve at a stress only slightly less than that at which the
unloading curve begins. The stress loss is closely proportional to the
local tangent modulus to the stress-strain curve. Consequently, for a
material with a sharp knee, C should be approximately equal to the
classical value at a stress near the yield. In fact, C will approach
0.6 as Et approaches zero.

Effect of Internal Pressure

Flﬁgge (ref. 5) investigated the effect of internal pressure on the
buckling of a circular cylinder under axial compression by using linear
‘“theory and found that no increase in buckling load is to be -expected as
a result of the pressurization. Lo, Crate, and Schwartz (ref. 26) analyzed
the problem using large-deflection theory with the energy criterion-of
Von Kdrmdn and Tsien (ref. 10) and found an increase from the theoretical
value of O.57Et/r to the classical value of O.6Et/r as the pressure
increases.

Lo, Crate, and Schwartz also tested a 2024-T3 aluminum-alloy cyl-
inder under axial loading through a range of internal pressure and found
that the theoretical increase in load with pressure was substantiated,
although the actual buckling stress obtained experimentally was of the
order of half the classical theoretical value at no pressure. -The value
of C for p= 0 was obtained from figure 7 and is in good agreement
with these test data, which are closely fitted by a straight line as
shown in figure 13.

The maximum pressure applied to the cylinder produced an axial ten-
sion stress in the wall equal to roughly half the compression stress at
which the cylinder buckled with no internal pressure. The buckling stress
in the cylinder at this pressure was twice the unpressurized buckling

stress.
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CYLINDERS IN BENDING

The buckling behavior of cylinders under bending loads corresponds
to that of axially compressed cylinders and curved plates in two respects.
First, linear theory predicts buckling stresses of the same order of
magnitude for both these cases. Second, the test data are below the pre-
dictions of linear theory by approximately the same amount. Consequently,
it seems reasonable to correlate test data on cylinders in bending in a
manner similar to that used for axially compressed cylinders.

The buckling of cylinders subject to bending is influenced by sev-
eral considerations beyond those encountered in the buckling of axially
compressed cylinders:

(1) The linear variation of bending strain across the section results
in a strain gradient and hence a stress gradient at any location on the
cylinder surface. A 'gradient factor" is introduced which permits cal-
culation of the bending-buckling stress from the axial-compressive-buckling
stress of a corresponding circular cylinder. '

(2) For elliptic cylinders buckling may not occur at the extreme
compression fiber of the section but at a location depending upon the
axis ratio of the ellipse. The elliptic-cylinder geometry at this loca-
tion must be used in the buckling-stress expression together with the
section modulus for this location to permit a comparison of applied
stress to allowable stress.

These two effects apply in both the elastic and inelastic ranges.
In the latter range two additional effects occur:

(5) The nonlinear distribution of bending stress across the sec-
tion leads to the well-known modulus of rupture effect.

(4) The reduction of local wall stiffness due to plasticity leads
to the plasticity-reduction factor.

These factors are discussed in the present section, in which the
bending behavior of cylinders of circular, elliptic, and circular-arc
sections is examined. Figure 14 depicts the cross-section geometry for
the various shapes.

Historical Background
Brazier calculated the stress at which a circular cylinder would

veccre unstable as a result of flattening of the cross section (ref. 27) .
This type of instability is comparable with Euler buckling of a very long
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axially compressed cylinder. Brazier instability ¢an be observed in
some of Osgood's tests on long, thick-wall cylinders that buckled in
the inelastic range (ref. 21).

The stress at which local buckling occurs in circular cylinders
under bending has often been assumed to be equal to the value for axial
compressive buckling of the same cylinder. Fligge, however, performed
calculations based upon linear theory that showed a 30-percent increase
in bending-buckling stress over the classical axial value (ref. 28).
Such an increase is in general agreement with the test results obtained
by Lundgquist on aluminum-alloy specimens (ref. 29) and by Donnell on
steel and brass specimens (ref. 8).

Lundquist and Burke extended the experimental investigation to cyl-
inders of elliptic cross section bending about the minor axis (ref. 30).
Heck performed tests in which elliptic cylinders were bent about the
major axis as well as about the minor axis (ref. 31). More recently,
Frahlich, Mayers, and Reissner analyzed circular-arc cross sections
(ref. 32), and Anderson, Pride, and Johnson conducted tests on specimens
of this shape (ref. 33).

Inelastic-buckling data were obtained for circular cylinders in
bending by Osgood (ref. 21), Moore and Holt (ref. 22), and Moore and
Clark (ref. 23).

Behavior of Circular Cylinders in Bending

The local-buckling behavior of circular cylinders in pure bending
may be divided into several ranges similar to those pertaining to axially
compressed cylinders. In the short-cylinder range the buckling coeffi-
cient kp approaches that of a wide compressed plate as a lower limit,

for which the buckling stress is expressed in the form

ke 2 |
Ocr = CE) (33)
12(1 - vg2)
and
2 1/2
77, = %E<l - ve2)

Tn the long-cylinder range the relation between buckling stress and the
cylinder geometry is of the form Jer = CEt/r. In figure 15 the various
ranges are shown for the data of Lundquist (ref. 29) and that of Donnell
(ref. 8).



NACA TN 3783 33

The two limits of the local-buckling region are connected by & transi-
tion curve, and throughout this entire region buckling occurs in the dia-
mond pattern observed in axially compressed cylinders. When the cylinder
is very long, the flattening of the cross section caused by the radial
components of the axial deformations in the bent cylinder leads to a
large reduction of the effective section modulus of the cylinder, and
instability occurs as a single transverse wave on the compression side
?f the shell. This is the type of behavior investigated by Brazier

ref. 27).

The behavior of cylinders in the upper-transition and long ranges
is evident from the plot of C as a function of r/t shown in figure 16.
The pertinent curves of figure T, which appear in this figure, were
obtained by utilizing the imperfection theory of Donnell (discussed in
the sections entitled "Circular Cylinders Under Axial Compression” and
"Spherical Plates Under External Pressure') in combination with test data
obtained by several investigators on axially compressed circular cylinders.

The relation between C and r/t' is shown in figure 7 for a range
of U values. The upper limit of the axial-compression data corresponds
to U = 0.00015, which is representative of Lundquist's data, whereas the
lower limit for U = 0.00035 is representative of Donnell's data. The
difference in U for the specimens of Lundgquist and Donnell may be the
result of the different material thicknesses used. The cylinders of
Lundquist were shells on the order of 0.025 inch thick, which are typical
of aircraft structures, whereas Donnell utilized shim stock on the order
of 0.004 inch thick.

Tor comparison with the bending data of these investigators, the
pertinent values of U from the axial curve were multiplied by Fltugge's
theoretical value of 1.3 (ref. 28) to obtain a curve with which the
bending test data could be compared. This increase is attributed to the
strain gradient associated with the linear cross-sectional strain dis-
tribution and is termed herein the gradient factor 7. In general, there
ig relatively good agreement with these curves for aluminum and for steel.
However, the large scatter in the brass data would appear to render it of
dubious value for comparison with the empirical unified theory being used
here for comparison.

A comparison of axial-compression and bending data obtained by
Lundquist on Duralumin cylinders (refs. 14 and 29) appears in figure 1T.
Corresponding data obtained by Donnell appear in table 2. Both Lundquist
and Donnell reported an average value of 1.4 for the gradient factor on
the basis of these data. Since stress and strain are linearly related
in the elastic range the gradient factor pertains to both. However,
there is considerable scatter in the data, as may be seen from table 2
and figure 17. :
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The tests of Domnell were run on matched cylinders, some of which
were tested in axial compression and some, in pure bending. Because of
the close dimensional agreement between corresponding cylinders of these
two types of tests, 7y was calculated for each cylinder as given in
table 2.

The data of Lundquist, however, do not permit this cylinder-for-
cylinder comparison, and consequently it was necessary to compare the
buckling stresses for the two types of loading by a method such as that
shown in figure 17, in which curves have been drawn through the mass of
test data for both types of loading. The ratio of the G/E intercepts
at any value of r/t leads to the gradient factor v since the slopes
of the curves are virtually the same. Thus, at r/t = 1,000,

y ="0.000295/0.000205 = 1.4k from figure 17.

Numerical Value of Buckling Stress for Circular Cylinders

For long cylinders, the buckling stress may be determined from

Ocr = CbE"C/I‘ (3h4)

On the basis of test data presented in figure 16, it is recommended that

Cp = 1.3C, where C is the coefficient determined for axially compressed
circular cylinders from the data in the section "Circular Cylinders Under
Axial Compression.” Considering the scatter in the test data, the gradient
factor of 1.3 represents a conservative average value to be used with the
curve of C as a function of r/t from figure 7 for an average value

of U= 0.00025. For short and transition-range cylinders no data are
available to permit recommendation of a gradient factor.

Behavior of Elliptic Cylinders in Bending

gince the curvature varies with location, the buckling behavior of
a long elliptic cylinder involves the location of the point of critical
curvature as well as the use of a suitable gradient factor. Tests indi-
cate that the buckles are diamond shaped and similar to those observed
on circular cylinders.

, Since it has been assumed that the gradient factor is a result of
the linear variation of strain across the cylinder section, then a similar
increase is to be expected for long elliptic cylinders at the point where
the critical curvature is located. This is substantiated by test data

of Lundquist and Burke (ref. 30).and Heck (ref. 31) on aluminum-alloy
elliptic cylinders which cluster in the region of the circular-cylinder
data, as shown in figure 18.
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In order to reduce the data to a form which would permit comparison
with the axial-compression-stress data, it is first necessary to determine
the point of critical curvature (y/a)cr which corresponds to the buckle

location on the cross section. By use of the procedure described below,
the critical curvature is readily obtained from figure 19. For example,
for ellipses tested by Lundquist and Burke with a = 7.5 inches, the
critical radius of curvature ¥ is 6.08 inches for b/a = 0.8 and
8.13 inches for b/a = 0.6. The test data for these cylinders are shown
in terms of C as a function of f/t in figure 18 and as ky, as a

function of Zr, in figure 20. It should be noted that, in the equation

for ZL’
2 1/2
7y = I:’—t(l - ve?) / (35)
r

the radius of curvature at (y/a)cr is used. The local-buckling stress
at (y/a)eyr is found from equation (33).

Although no axial-compression data exist with which to compare these
bending results directly, it may be assumed that the quality of fabrica-
tion of the bending specimens was similar to that of the specimens pre-
viously tested by Lundquist in compression. Consequently, a value of
U = 0.00015 was used to correlate the data. As may be seen in figure 18,
the gradient factor 7 has approximately the same value of 1.3 for the
elliptic cylinders tested as for the circular cylinders tested in bending.

The relation between kp, and Zy 1s depicted in figure 20, which

shows no appreciable effect of f/t for a range from 250 to 750. For
all practical purposes, all the data appear to cluster about one curve.
This is also substantiated by figure 18, which reveals a rather flat dis-
tribution of the data over a range of values of f/t. The curve corre-
sponding to Xkp = 1.3k has been plotted in figure 20 for r/t = 500,

where it is seen to fit the data well.

Computation of Buckling Stress for Elliptic Cylinders

From the standpoint of the analysis of a structure, it is generally
desirable to compare applied stress with allowable stress. .On an elliptic
cylinder in bending, therefore, it is necessary to locate the position on
the cross section at which buckling occurs (see fig. 21) and to compute
the section modulus for this location. The quotient of applied moment
and this section modulus yields the applied stress, and the local radius
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of curvature permits computation of the allowable stress for this posi-
tion. In summary, then, the following steps are suggested:

(l) Compute the section modulus of the circumscribed circle ©Og = nact
(see fig. 21). '

(2) Find the extreme-fiber section modulus of the elliptic cylinder
using the relation Se = (Se/Sa)Sa together with figure 22 in which
Se/Sa appears as a function of b/a. '

(%) From figure 19 find (y/a)cr and ¥/a as functions of b/a.

(4) Compute the applied stress at the location of the critical curva-
ture from Oy, = M(y/a)cr/Se.

(5) Compute the allowable stress at this location (for long cylinders
only) using Ocr = CpEt/%, in which Cyp is found from the curve of fig-
ure 18 for the pertinent value of fﬁ. ﬂwgmﬂmm:ﬁwmrofljjﬁ
included in this curve.

The location and magnitude of the critical curvature l/f, where T
is the critical radius of curvature, can pbe determined by plotting the
nondimensional curvature of the ellipse

-3/
a/r = (b/a)-{l - [l - (bg/ag)}(y/a) o (36)

as a function of y/a for selected values of b/a. Since the stress
across the section varies linearly from zero at the neutral axis, and
since the axis of a/r may also be considered to be an arbitrary-
magnitude stress scale (fig. 23), a line from the origin tangent to the
a/r curve determines the location of (y/a)cr and I, or

(a/r) _ ala/x)
(y/a) aly/a) (57)

Figure 19 displays (y/a)cr and f/a as functions of b/a. Actually,
it has been. analytically determined that:

o

(y/2)or = 0.5_[1 ; <b2/a2>} R (58)



NACA TN 3783 ' 37

(7/a) = 0.649a/b (39)

Note that when b/a > 0.866, buckling must occur at the extreme of the
major axis, and T = a.

Behavior of Circular-Arc Sections

A cylinder consisting of two circular arcs symmetric about their
common chord tends to flatten during bending in the same manner as a
very long circular cylinder which becomes unstable in the Brazier mode.
The behavior of long circular-arc-section cylinders was analyzed theoreti-
cally by Fralich, Mayers, and Relssner (ref. 32), who investigated the
nonlinear relation between moment and stress and found that the insta~
bility stress may be computed by the expression

Gop = 0.285Et/r (40)

in which r is the radius of curvature of each arc in the doublet.

Anderson, Pride, and Johnson (ref. 33) performed tests on three
circular-arc-section cylinders of 7075-T6 aluminum alloy with the results
shown in table 3. The cylinder section geometry is shown in figure 1k.
Because of its shape, a circular-arc cylinder undergoes chordwise deforma-
tion of the section which leads to a neutral axis shift. This secondary
effect was neglected in the derivation of equation (40).

It might be expected that for certain cylinder proportions local
buckling would precede Brazier instability. For example, this could be
anticipated in circular-arc cylinders corresponding to the upper transi-
tion range of circular-cross-section cylinders. Also, at a certain value
of r/t the local-buckling stress could be found from a curve of C as
a function of r/t, such as that for axially compressed circular cylinders
(fig. 7), providing an appropriate gradient factor could be found for the
circular-arc section in bending in terms of the axial-compression case.
This is complicated by the fact that each arc of the profile actually is
a curved plate with boundary conditions along the contiguous edges of the
section arcs.

The gradient factors for the three test cylinders were obtained by
taking the ratio of the test C to the theoretical C. The test C 1is
equal to the ratio of measured buckling stress to the theoretical value
from equation (40), multiplied by 0.285 (the coefficient of eq. (L0)).
This C has been designated C3; in table 4. The coefficient from fig-

ure 7 for U = 0.00015, which applies to the aluminum-alloy data of
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Lundquist on circular cylinders, is designated Cp 1in table 4, in which
y 1is shown as the ratio of these two C values. Because of the sparse
data, no recommendation can be made for a value of 7 for circular-arc
sections.

Inelastic Behavior of Long Circular Cylinders in Bending

It was shown in the preceding sections that a long circular cylinder
which buckles elastically under bending sustains a stress approximately
30 percent greater than would the same cylinder loaded in axial compres-
sion. This has been attributed to the gradient effect. When the extreme-
fiber stresses are in the inelastic range, the redistribution of the cross-
sectional stresses leads to a significant reduction in the stress gradient,
which would be expected to reduce the gradient factor. For large inelastic
stresses on a cylinder consisting of a material with a flat strain-hardening
curve, for example, the stress would be virtually constant around most of
the compression arc.

As a countermeasure to the diminished stress-gradient effect, the
nonlinearity of stress distribution permits the cylinder to sustain a
plastic bending moment greater than the fictitious elastic moment cal-
culated according to OepSe. This is the well-known modulus of rupture

effect. A further plasticity effect is the decrease in the local rigidity
of the cylinder wall, which is represented by the plasticity-reduction
factor n.

For a beam with the extreme-fiber stress in the inelastic range, it
has become common practice to define a fictitious elastic stress oy as

the bending modulus of rupture:

or = M/Sc (41)

Since the actual stress distribution is nonlinear and depends upon the
shape of the cross section, it is customary to use a 'shape factor" to
determine the actual plastic stress at the extreme fiber op. The shape

factor is defined as

p = or/op (42)

Thus, the actual stress op 1n terms of the moment and section modulus
is

op = M/pSc (43)
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For both the reduction of experimental data and design purposes,
it is convenient to use the ratio of oy, computed from equation (41)
for a cylinder under bending, to the buckling stress of the corresponding
cylinder under axial compression. Thus,

M/S I
e _ p —== pYg (k)

oCcr 0Ccr

where:
Obep = 7eCLE(H/T)
Ocey = CncE(t/r)

In the elastic range it was not necessary to distinguish between
the strain gradient factor 7y, and the stress gradient factor 4.

They: were the same and equal to 1.3. As a simplification of the problem
for the inelastic case, it is assumed that

Ve = 15 = ebcrlefcr B (dbcr/nb> <Uccrlnc> (45)

Thus, from equation (45), the value of 75 is obtained as the ratio of
Oper O Ocerp from a plot of ¢ against d/n as shown in figure 2L.
The stress Ocop corresponds to the selected value of °Ccr/nc(= CEt/r)

and Opayp corresponds to l.30ccr/nc.

Tn order to demonstrate the influence of the two factors 7g and o

of equation (44) for a typical material, the stress-strain curve for
6061-T6 aluminum alloy shown in figure 24 was used for purposes of cal-
culation, from which the plot of Ucr/ﬂ was derived as a function of 0.
The plasticity-reduction factor n is that for an axially compressed .
circular cylinder as given in the section "Circular Cylinders Under Axial
Compression. "



40 NACA TN 3783

The factors 7y, and p are depictéd in figure 25(a) as functions
of Gccr/dcy- It can be seen that 795 decreases from 1.3 to unity, while

p rises from unity to the fully plastic value of M/ﬂ. The product of
these two factors falls slightly from 1.3 and then rises to A/ﬂ. The
most rapid changes are confined to the region of cccr/ccy near 1.

The trends of figure 25(a) are substantiated by the experimental
data of figure 25(b) which were obtained from matched cylinders, one
group of which was tested in compression while the other was tested in
bending. The data for 2017-T4 aluminum-alloy cylinders were obtained by
Osgood (ref. 21) and the 7075-T6 aluminum-alloy cylinders were tested by
Moore and Clark (ref. 23). Osgood's photographs of the failed specimens
indicate the presence of Brazier instability at large buckling stress
which tends to account for the decrease of 95 for the 2017-T4 data

beyond the yield stress.

The different shapes of the curves for the two materials reflect
different inelastic properties. The sudden change for 7075-T6 alloy is
consistent with the sharp knee of the stress-strain curve for that mate-
rial, whereas the more gradual variation for 2017-Thk alloy would follow
from the rounded knee of its stress-strain curve.

CIRCULAR CYLINDERS UNDER TORSION

Historical Background

The early torsional-instability investigations were concerned with
long elements. Greenhill determined the buckling stress of a long twisted
rod or wire (ref. 34) and Schwerin calculated the local buckling stress
of a long, thin-wall tube with two helical waves (ref. 35). Donnell used
the eighth-order equilibrium differential equation, equation (10), and
extended the analysis of the torsion-buckling problem to moderate- and
short-length thin-wall cylinders (ref. 6). Fair agreement with experi-
mental data of Donnell (ref. 6) and Lundquist (ref. 36) was obtained.

Donnell's results were based upon certain simplifications employed
in the numerical computations. Leggett analyzed the problem without
such simplifications and obtained improved agreement with test data
(ref. 37). Batdorf, Stein, and Schilderout (ref. 38) utilized a modified
form of the single equilibrium equation of Donnell and by use of Galerkin's
method obtained results in good agreement with those of Leggett.

Cerard included the effects of plasticity in the three simplified
equilibrium equations from which the Donnell equation was derived and
showed that the secant modulus is the applicable plasticity-reduction



NACA TN 3783 , k1

factor for this case (ref. 7). Close correlation was obtained with the
test data of Stang, Ramberg, and Back (ref. 39), of Moore and Paul
Eref. 40), of Moore and Wescoat (ref. 41), and of Moore and Clark

ref. 23).

The effects of internal pressure were investigated theoretically
by Hopkins and Brown (ref. 42), who obtained fair correlation with the
test data of Crate, Batdorf, and Baab (ref. 43).

Experimental Data

The test data for elastic buckling of thin-wall cylinders under
torsion appear in figure 26 in the form of the torsional-buckling-stress
coefficient plotted as a function of Zj. The theoretical curve of

Batdorf, Stein, and Schildcrout is shown and it appears to yileld reason-
ably good agreement in this logarithmic plot. However, when a section

of the curve is plotted linearly, as in figure 27, the differences between
the theory and the data are apparent. It may be seen that the lower data
points are as much as 40 percent below the theoretical value of buckling
stress for a particular value of Zy. On the average the test data lie

16 percent below the theoretical curve.

In addition to the low values of the data, appreciable scatter is
evident. This may be partly due to initial imperfections in the cylinders
which were rolled from flat strips with a longitudinal connection along
the contiguous edges. Also, some of the scatter may be the result of the
method by which buckling was determined. The objective electric-strain-
gage indication of buckling, in use today, was unknown when Donnell and
Lundquist ran their tests. It was necessary to discern buckling visually.
Furthermore, Donnell and Lundquist reported collapsing stresses and not
buckling. These two situations leave room for greater departure between
theory and actual buckling stresses than the data reveal.

Buckling Behavior of Cylinders Under Torsion

For a thin-wall cylinder loaded in torsion in the elastic range,
buckling is not accompanied by immediate collapse as is the case with
axially compressed cylinders. This is illustrated for typical test data
by the curve shown in figure 28, from which it may be seen that after
buckling a practical twisted cylinder will behave somewhat -like a column.
The load gradually increases with small lateral deflection of the cylinder
wall. At a load near buckling the curve gradually flattens, and large
lateral deflection follows with little variation in load until failure
occurs. At failure, the torgue drops sharply with continued lateral
deflection of the wall. The mechanism by which a twisted tube may attain



L - NACA TN 378%

a failure load in excess of the buckling load has been ascribed in the
section "Physical Behavior of Curved Elements" to the tensile membrane
stresses generated along the buckle ridges when the deflection becomes
large.

Both Donnell and Lundquist observed that small initial dimples in
the surfaces of the test cylinders did not seem to affect the buckle
formation. Also, from the experimental results the initial imperfections
do not appear to affect the buckling strengths to any appreciable extent.
Contrary to their role in the compressive-buckling behavior of circular
cylindrical shells, small initial imperfections seem to have small influ-

ence upon the buckling behavior of cylinders loaded in torsion.

It is to be noted that the Greenhill type of instability may have
occurred in the tubes tested by Stang, Ramberg, and Back, which buckled
well within the plastic range (ref. 39). Several failed by helical deform-
ation of the tube axis without distortion of the cross section, which was
the nature of the instability predicted by Greenhill for long elements
that would not buckle locally (ref. 34).

Numerical Values of Torsional Buckling Stress

The theoretical curve of buckling-stress coefficient ky as a func-
tion of %7, appears in figure 26 together with the corresponding test

data. As mentioned previously, these data report failure and not buckling.
Consequently, the theoretical curve is somewhat optimistic. However, the
reported data do not indicate the buckling stresses of the cylinders and, .
therefore, it would be advisable to use a more conservative value than 1s
furnished by the theoretical curve.

A clue to the selection of such a curve is provided by the model
of postbuckling behavior for the twisted cylinder as described above.
Tt is indicated that the failure stress of a perfect cylinder should not
be much greater than its buckling stress. Since the average departure
of the test data is about 16 percent, the buckling stress of a cylinder
under torsion may be taken as 84 percent of the theoretical value on the
average.

For very short cylinders the buckling coefficient kg corresponds
to that for a long flat plate under shear kg with the buckling stress
expressed in the form:

ktﬂ2E (t 2
£ (46)
12(1 - ve2) \L>
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For clamped edges the torsional-buckling coefficient is 8.98 and for
simply supported edges it is 5.35. For intermediate-length cylinders
the curves approach straight lines which correspond to

5
rer = 0.95(x2/12) (1 - ve2) "/ Ba(t /) ¥z 1) 22 (47)

for clamped edges and

5
rer = 0.85(x2/12) (1 - ve2)™ B /e) TH(ery 22 (48)
for simply supported edges. These expressions apply theoretically for
lO(t/r)l/2 < L/r < 5(r/t)l/2.

In these cases the number of circumferential buckles was greater

than two. When the cylinder L/r exceeds B(r/t)l/2 there are only

two circumferential buckles, and the buckling stress for long cylinders
as derived by Donnell is

Top = 0.272(1 - ve2) "3/ 45 (/) 3/2 (49)

Plasticity-Reduction Factors

A plasticity-reduction factor must be determined for each of the
~three cylinder length ranges. For very short cylinders, flat-plate

action is approached. Gerard has demonstrated empirically that the shear
secant modulus yields agreement with test data (see fig. 29)_for long

flat plates loaded in pure shear (ref. 44). The equation for the buckling
stress of the cylinder in this range, as shown in reference 1, is then

(50)

) .
ksﬁ B /3)2

Ter = 7
12(1 - ve2) \P

vhere 1 = (Eg/E)(1 - ve2)/(1 - v2) and corresponds to a value of T = d/2.

For very long cylinders, to which equation (49) is applicable for
elastic buckling, the secant modulus is again the plasticity-reduction
modulus, as was shown by Gerard theoretically (ref. 7). This agrees with
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test data, as may be seen from figure 30. Thus, the inelastic counter-
part of equation (49) is

Ter = 0.272n(1 - -veE)'B/L‘E(t/r)B/2 (51)

iy
where 1 = (ES/E)[(l - veg)/(l - vgi}B/ and corresponds to a value of
T = 0/2.

No inelastic theory has appeared in the literature for intermediate-
length cylinders. However, the applicability of the secant modulus in
the limiting cases would seem to justify its use in this range. This is
partially bolstered by test data, in which, unfortunately, there is large
scatter (fig. 31). Still, the trend is seen to agree with the secant-
modulus plasticity-reduction factor.

Inelastic-buckling stresses for twisted cylinders may be found from
the nondimensional curves of figure 32 by using

€cr = Ter/nE ' (52)

Bffects of Internal Pressure

By use of Donnell's equation, Hopkins and Brown analytically cal-
culated the effect of internal pressure on the buckling stress of twisted
cylinders (ref. 42). Fair correlation was obtained with the experimental
results of Crate, Batdorf, and Baab, who utilized an empirical interaction
equation to fit the test data (ref. 43).

On the basis of tests performed on a single cylinder with different
stiffener ring spacings, Crate, Batdorf, and Baab derived the interaction

relation
Ri? + Rp = 1 - (53)

in which the pressure ratio Rp 1is equal to the quotient of the applied

internal pressure and the external hydrostatic pressure that would buckle
the cylinder by itself. The torsional- and hydrostatic-buckling stresses
can be found from the curves discussed in this section and in the section
"Circular Cylinders Under External Pressure.’
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The test results of Crate, Batdorf, and Baab are shown in figure 35
from which it can be observed that good agreement of test data with the
interaction curve is obtained.

Elliptic and D-Section Cylinders

A circular cylinder loaded in torsion buckles over its entire sur-
face. If initial imperfections are small, buckling will occur suddenly
and will coincide with failure. If imperfections are appreciable, the
buckling stress is not precisely defined, as it is for a perfect cylinder;
however, failure will occur at a stress substantially the same as for the
perfect cylinder.

In general, the behavior of a noncircular cylinder follows that of
a circular cylinder with initial imperfections. When torque is applied
to a cylinder with an elliptic cross section, buckling occurs first at
the ends of the minor axis and progresses toward the ends of the major
axis. When the buckle reaches this point the cylinder collapses. The
reason for this behavior may be evident if the radius variation from the
minor axis to the major axis is considered. Since the radius at the major
axis is the smallest for the cross section, this region stabilizes the
cylinder against collapse until the buckle forces failure.

D-section cylinders behave in the same manner as complete cylinders.
In fact, all cylinders with the same Zj, fail at the same kt, as may

be seen in figure 34. In this figure buckling coefficients are plotted
as a function of Zj, for elliptic cylinders tested by Lundquist and
Burke (ref. 30) and for circular and elliptic D-tubes tested by Sherwood
(ref. 45) and by Kavanaugh and Drinkwater (ref. 46). The buckling-stress
expression is the same as that given for circular cylinders in equa-

tion (46) and for

.
77, = %(1 _ ve2)?

For Z1, the semimajor axis of the ellipse or D-tube section is

taken equal to r. This is depicted in the sketches accompanying the

data of figure 34, which also contains the theoretical circular-cylinder
curve of Batdorf, Stein, and Schildcrout (ref. 38). As is apparent from
this figure, the agreement is good. Some of the test data for the elliptic
cylinder rise above the theoretical curve. However, the main mass lies
almost entirely within the circular-cylinder scatter band.
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CIRCULAR CYLINDERS UNDER EXTERNAL PRESSURE

Historical Background

A rather complete bibliography up to 1939 on the buckling of circular
cylinders under pressure is contained in a paper by Sturm (ref. 47). The
present section, for the most part, is confined to the work of Windenberg
and Trilling (ref. 48), of Sturm, and the more recent work of Batdorf

(ref. 3).

Windenberg and Trilling performed tests from which empirical rela-
tions were obtained between certain cylinder parameters and buckling
stresses. Sturm investigated radial and hydrostatic buckling both theo-
retically and experimentally, with the test data confined to the long-
cylinder range. He solved the set of differential equations for both
simply supported and fixed ends. Batdorf employed Donnell's single equa-
tion to obtain solutions to the cases of simply supported cylinders under
radial and hydrostatic pressure. The simplicity of using Donnell's equa-
tion was demonstrated in the section "Stability Theory of Curved Elements.

Kempner, Pandalai, and Patel investigated the postbuckling elastic
behavior of hydrostatically loaded cylinders and demonstrated theoreti-
cally that significant pressure increases could be sustained in short
cylinders after buckling (ref. 49). This work tends to substantiate the
explanations given in the section 'Physical Behavior of Curved Elements"
concerning those cases in which large-deflection effects are likely to
be of importance.

Test Data

The test data for failure of circular cylinders under pressure loads
appear in figure 35(a) for radial pressure alone and in figure 35(b) for
hydrostatic pressure. On the whole, the agreement with Batdorf's theo-
retical results is good, with relatively little scatter. This agreement
suggests that small initial imperfections are unimportant in this case.
In fact, Sturm's test data indicate that initial eccentricities in the
test specimens varied from negligibly small to some considerably greater
than the wall thickness. Furthermore, the results reported by Windenberg
and Trilling (ref. 48) as well as by Sturm (ref. L47) were failing stress,
and not buckling stress, which tends to smooth out the effects of small
imperfections. ;

The test data of Windenberg and Trilling for the hydrostatic-loading
case appear to lie along a straight line at a slight slope to the theo-
retical line of Batdorf. The agreement with theory is good for values
of Zj beyond 100. Below this value of 7y, however, the test data are
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below the theoretical values. (A close examination of these data indi-

cated that plasticity effects may have lowered the failing stress com-

pared with the theoretical elastic-buckling stress.}ﬂThis suspicion is

based on the fact that the data are at a fairly large fraction of the Nﬂ?
tensile yield strengths reported. Compression yield strengths for
straightened sheet materials are generally considerably below the tension
yield values, which would tend further to increase the influence of plas-
ticity effects.

Behavior of Cylinders

A long circular cylinder under either radial or hydrostatic loading
will buckle into two circumferentisl harmonic waves in the same manner
as a ring. As the cylinder length decreases, the number of circumferential
waves increases with a consequent increase in buckling stress. Sturm has
shown that when the buckling pressure is plotted as a function of L/r
for particular values of r/t, peaks will occur in the curves similar to
those obtained for flat plates when k is plotted as a function of a/b.
Each of these peaks represents the transition from n circumferential
buckles to n + 1 buckles as the energy for n + 1 Dbuckles becomes less
than the energy for n buckles.

For very short cylinders under radial pressure, Batdorf has demon-
strated that the behavior corresponds to that of a long flat plate under
longitudinal compression, with the boundary conditions along its longi-
tudinal edges corresponding to those along the cylinder edges. The
behavior of hydrostatically loaded short cylinders theoretically approaches
that of an infinitely long flat plate with biaxial compression loading in
which the transverse component is half of the longitudinal. In both these
cases the buckling stress and wave number are determinable from the curves
of reference 1, with a/b equal to onr /L.

" The low data for Zr, < 100 obtained by Windenberg and Trilling per-

tain to cylinders reported to be fairly free from initial imperfections. \
Some of the decrease may be chargeable to the effects of plasticity, since ;><
the stresses approached the yield for some of these cylinders.

There may also be a conflict of testing procedure and theoretical
analysis. Theory assumes that the deformation of the cylinder under the
external loads is not restrained. However, radial rigidity of the end
plates of a test cylinder under hydrostatic pressure would result in a
relative inward displacement of the cylinder wall before buckling begins.
If the cylinder were long, this initial eccentricity might not affect
the buckling stress. However, it may exert appreciable influence on the
buckling stress of a short cylinder under hydrostatic pressure.
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Buckling—Stresé'Equations

Radial pressure.- Under inward-acting radial pressure, the
circumferential-compression stress generated in the cylinder wall is

pr
The buckling stress of the cylinder under this loading is

Kk 2F 2 '
Y ( 3) (55)
12(1 - ve2)\L

Ocr =

When more than two complete waves are formed around the circumfer-
ence of the cylinder, Donnell's equation may be used to compute the
buckling stress. This was done by Batdorf for cylinders with simply
supported edges as shown in the section "Circular Cylinders Under Axial
Compression." Values of ky are shown in figure 35(a) .

When the length approaches zero, the cylinder degenerates into a
long, longitudinally compressed, flat plate. In reference 1, the buckling
coefficient was shown to have a value of L4 for simply supported edges and -
6.98 for clamped edges.

When the cylinder is of sufficient length, buckling will occur in
two circumferential waves, and Donnell's equation, which is based on the
assumption that n2 >> 1, cannot be used. A solution for a long cylinder
has been given by Timoshenko in the form :

(56)

E /£\°
Ocr

) L(1 - veQ)KF

for (L/r)2 > 5(r/t). Figure 35(a) contains the theoretical curves for
all three cylinder length ranges.

Hydrostatic pressure.- Under hydrostatic pressure, which 1s a par-
ticular case of the general combination of radial pressure and axial
loading on a cylinder, the following biaxial-stress field is generated
in the cylinder wall:
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pr
O'y = -_—t—
(57)
_
%% = %

For 31mply supported edges, the solution obtalned by Batdorf by use of
Donnell's equatlon is given in the section "Circular Cylinders Under
Axial Compression.'

When the cylinder length becomes small the circumferential-buckling
coefficient approaches 2. This result follows directly from the flat-
plate interaction curves corresponding to the biaxial- stress field of
equation (57).

For long cylinders, the behavior under hydrostatic pressure is the
same as that for radial pressure alone (eq. (56)) according to linear
theory. The buckling-coefficient curves for this case appear in fig-
ure 35(b) together with the theoretical curves for the other two cyl-
inder length ranges.

Effects of Plasticity
When the circumferential stress in the cylinder wall under radial

pressure exceeds the proportional llmlt, equation (55) may be written
in the form .

(58)

) ‘
. kyn "B t>2
12(1 - ve2)\D
The plasticity-reduction factor for long cylinders was found by Bijlaard

(ref. 24) to be the same as that for a wide plate column, which was shown
in reference 1 to be

- va2 E, \
s RPN ) (59)
E (1 -v2) \& Uk Es,

utilizing a value of 0.5 for the plastic Poisson's ratio after the manner
of Stowell. This result applies to long cylinders only ((L/r)2 > 5(r/t))
and corresponds to the curves of figure 35(b) for which specific values
of r/t are indicated.
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CIRCULAR CYLINDERS UNDER COMBINED LOADS

Historical Background

The first investigations into the buckling of circular cylinders
under combined loads were experimental. Bridget, Jerome, and Vosseller
conducted tests on steel and brass cylinders in torsion combined with
axial tension or compression and derived empirical interaction curves
from the results (ref. 50). Wagner and Ballerstedt constructed an inter-
action equation from data obtained from tests on brass cylinders under
torsion and tension (ref. 51).

Theoretical analyses were made by Leggett (ref. 52) and by Kromm
(ref. 53) on the combination of torsion and axial compression, using the
basic linear shell equilibrium equations. Subsequently, Bruhn conducted
a large number of tests on celluloid cylinders under various combinations
of axial compression, axial tension, bending, and torsion (ref. 54). He
compared his results with empirical interaction relations.

More recently Batdorf, Stein, and Schildcrout investigated buckling
under axial compression and torsion using Donnell's equation (ref. 55).
They- derived theoretical interaction relations which they modified for
practical application by substituting empirical buckling stresses for
the theoretical values in the denominators of the stress ratios.

Interaction Equations

The use of interaction equations in terms of stress ratios for solu-
tion of combined-load buckling problems on flat plates was described in
reference 1. Interaction equations for various combinations of loadings
on circular cylinders appear in table 5 of this report. In the following
paragraphs these equations are discussed in detail.

Axial Compression and Bending

Since the nature of the buckle pattern is the same for axial com-
pression and bending of a circular c¢ylinder, a linear interaction equa-
tion might be expebted for this case. Bruhn has shown this to be a good
approximation to the data in figure 36(a) .
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Axial Load and Torsion

Theoretical analyses of combined-load buckling of cylinders have
been limited to application of linear theory to the combination of axial
load and torsion. This was done by Kromm, Leggett, and Batdorf, Stein,
and Schilderout, whose work differs mainly in mathematical details. They
all obtained essentially the same results.

From linear analysis, Batdorf, Stein, and Schildcrout (ref. 55)
obtained an interaction equation for axial compression and torsion,

Ro + Re2 = 1 (60)

which is applicable for small values of Zj, (see table 5). For large
values of Zj, they suggested retaining the form of equation (60) with

the provision that empirical results for the shear- and axial-compression-
buckling stresses be used in the stress-ratio denominators instead of the
theoretical values in order to obtain correlation with the data for numer-
ical stresses in the limiting cases of Re = O or Rt = 0. The ranges

of applicability of this equation are shown in table 5, and the agree-
ment with Bruhn's test data is shown in figure 36(b). Similar agreement
was obtained with the data of Bridget, Jerome, and Vosseller (ref. 50).

For axial tension and torsion, Batdorf, Stein, and Schildcrout
recommended

0.8R; + Ry = 0.9[-1 <Re <0, 30 <z, < 7.7(r/t)2] (61)

Bruhn obtained good agreement with test data using O.MRc + Ry =1

for the same range of R, and Zr -

Bending and Torsion

The experimental results of Bruhn are shown in figure 36(c) together
with three interaction equations. The parabolic equation is seen to be
conservative, while the equation for the circle gives too large a value
at large values of Ry. The best overall agreement is obtained with the

relation

Ryl:9 + RZ =1 (62)

Axial Compression, Bending, and Torsion

Bruhn performed tests on cylinders with 230 < r/t < 800 wunder the
combination of axial compression, bending, and torsion, and obtained
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results that show considerable variation in predicted value of one stress
ratio for selected values of the other two (ref. 54). A typical set of
these data is shown in figure 37 from which these variations are apparent.
However, the two-dimensional interaction curves derivable from these charts
agree reasonably well with those of figure 36. Additional tests conducted
on cylinders covering a range of axial tension as well as compression
agree fairly well with the expression

RC + Rb -+ Rtg = 1 (65)

Tt may be concluded, therefore, that interaction relationships for this
combination are uncertain at present.

Transverse Shear and Bending

Lundquist conducted tests on the behavior of circular cylinders
under combined transverse shear and bending (ref. 56), and Lundquist and
Burke continued this program to include elliptic cylinders (ref. 30).
By varying the lengths of the cantilevered cylinders, it was possible to
determine the shear-buckling stress under combined bending and shear.
By extrapolation of these results to a zero bending stress, the equivalent
pure transverse shear-buckling stress was obtained.

These stresses were compared with the torsional-buckling stresses
for these same cylinders as determined from the theoretical curve of
figure 26, which revealed a value of about 1.6 for the ratio of the trans-
verse to torsional shear-buckling stresses for both circular and elliptic
cylinders. This value, however, represents an average for the data. The
minimum value of 1.25 was used by Lundquist and Burke in the derivation
of interaction relationships for combined transverse shear and bending.
The buckling stress in pure bending was available from previous investi-
sations described in the section 'Cylinders in Bending.'

As a result of this analysis, it is possible to express the stress
ratios in the form

R, + R® = 1 (6k)

In computing Ry use figure 16 to find the buckling stress under bending
alone. For Rg multiply the theoretical torsional-buckling stress

obtained from figure 26 by 1.25 to account for the transverse-shear
effects. This value of 1.25 is conservative when compared with the
average of the test data.
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CURVED PLATES UNDER AXTAL COMPRESSION

It is natural to expect that the behavior of curved plates under
compression would be similar in many respects to that of a circular cyl-
inder under compression since a curved plate is essentially a section of
a cylinder. Long plates of sufficient curvature and width do, in fact,
exhibit the same characteristics as long cylinders. Both buckle at
stresses considerably below the predictions of linear theory and it is
apparently necessary to utilize large-deflection theories to obtain
improved agreement with test data. Also in both cases diamond buckle
patterns are observed.

In this section, an attempt has been made to extend the unified
approach, which was applied to cylinders under axial-compression and
bending loadings, in order to correlate test data with theory for axially
compressed curved plates. Since previous- analytic investigations on
axial-compressive buckling of curved plates were primarily limited to use
of linear theory, close agreement with test data was found to occur only
near the flat-plate limit, as might be expected by analogy to the cylinder
results. Consequently, it was necessary to extend by empirical methods
the unified approach of the sections "Cylinders in Bending" and "Circuler
Cylinders Under Axial Compression.'

Historical Background

Redshaw applied the classical energy approach to the determination
of the buckling stress of axially compressed curved plates and obtained
an explicit equation for the buckling stress which reduces to the flat-
plate-buckling stress as one limit and to the classical cylinder-buckling
stress as the other limit (ref. 57). Sechler and Dunn suggested modifying
Redshaw's equation by using experimental values for the cylinder-buckling
stress instead of the classical theoretical value (ref. 58). Both of
these methods can be reduced to the form in which the curved-plate-
buckling coefficient is plotted as a function of the curvature parameter.

Stowell proposed a form for Redshaw's equation which utilizes the
classical cylinder-buckling stress and the flat-plate stress as limits
and employed a transition curve of the form utilized in the section
"Gircular Cylinders Under Axial Compression” for cylinders (ref. 59).

Test data on curved plates were obtained by Cox and Clenshaw
(ref. 60), Crate and Levin (ref. 61), Jackson and Hall (ref. 62), Welter
(refs. 6% and 64), and Schuette (ref. 65). Generally, no attempt was
made to correlate these data with the nonlinear theories of axial-
compressive buckling until the comprehensive treatment by Cox and Pribram
(ref. 66), who utilized the energy-buckling criterion of Tsien to explain
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the behavior of axially compressed curved plates. As shown in the section
"Stability Theory for Curved Elements," Batdorf utilized Donnell's equation
to derive the buckling coefficient for an axially compressed curved plate,
and Batdorf, Schildcrout, and Stein (ref. 67) attempted a synthesis of the
test data of Crate and Levin and of Cox and Clenshaw. Except for some

test data by Schuette in the inelastic range, all the preceding work was
confined to elastic behavior.

Summary of Test-Specimen Details

The dimensions of the plates tested during the four investigations
described herein are summarized in table 6. Schuette tested magnesium-
alloy plates (ref. 65), whereas the remainder of the tests were performed
on aluminum alloys. Two series of tests were run by Jackson and Hall
(ref. 62) because in the first series the behavior of the supporting
combs on the plate unloaded edges led to erratic results. The present
report contains data for the second series only, in which this defect
apparently was remedied.

Buckling Behavior of Axially Compressed Curved Plates

A curved plate loaded in axial-compression buckles in the same manner
as a cylinder when the plate curvature is large, and when the plate curva-
ture is small it buckles essentially as a flat plate. Between these two
limits there is a transition from one type of behavior to the other.

When load is applied to the plate it attains a critical load, after
which the load suddenly drops (at constant end shortening in a rigid
testing machine). Upon further axial deformation the load continues to
rise again and reaches a failure load which 1s greater than the buckling
load if the latter occurs elastically. When the plate buckles plastically,
buckling and failure are coincident. For a treatment of failure of com-
pressed curved plates, refer to Part IV of this Handbook (ref. 68).

Tests by Cox and Clenshaw (ref. 60) and by Jackson and Hall (ref. 62)
revealed that upon successive tests of a particular plate the upper
buckling load is usually reduced, whereas the lower buckling load and
failure level remained essentially constant.

The numerical values of buckling stress depend not only upon the
geometry of the plate but also upon the boundary conditions. In contrast
with cylinders with two edges along which boundary conditions exist, there
are four edges for curved plates, which not only increase the difficulty
of predicting the plate-buckling behavior, but also require additional
parameters to describe the behavior.
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Test data for each of four investigations are shown in figure 38(a)
in terms of k. and Zp, where

3
‘. - 12(1 - VEE)crcr/g 2
ﬂgE \t
o (65)
Zp = (02/rt) (1 - ve2)1/2

/

At small Zp values, the buckling coefficient approaches that of a flat

plate. The boundary conditions of the plates tested were between simple
support and clamped.  Thus an average of the buckling coefficients of
these two limiting cases, kpl = 5.7, was used for correlation purposes.

At large values of Zy, it can be observed that the buckling coef-
ficient is linearly related to Zp. Thus, the buckling stress in this
region of large values of Zp reduces to the form of equation (30). In

order to indicate this behavior more clearly, the data of figure 38(a)
have been replotted in figure 38(b) according to r/t groupings. The
solid lines of unit slope represent behavior according to equation (30)
in which the values of C were obtained from figure 7 for circular
cylinders. It can be observed that in the large Zy region the curved

plate approaches the cylinder in behavior.

Tn the intermediate region, a transition curve was fitted to the
two limiting cases discussed above. This transition curve is of the
same type used for cylinders in the section "Circular Cylinders Under
Axial Compression." It can be observed that the experimental data lie
above this curve. The cylinder data in the transition region displayed
a similar type of behavior which was attributed to length effects.

The range of geometric variables possible on a curved plate are
depicted in figure 4, which shows the many combinations of width and
length possible for such an element. In each case, a somewhat different
type of buckling behavior may be expected depending upon the curvature
of the plate. The two limiting cases of a short, wide plate with small
curvature and a long plate of large curvature effectively have two edges
along which boundary conditions may influence the buckling behavior of
the plate. Such plates behave essentially as circular cylinders. All
other cases depicted in figure 4 involve boundary conditions along four
edges. Most practical plates are of this type.



56 NACA TN 3783

In the transition region the buckling coefficient should reflect the
influences of the geometric parameters of the curved plate as well as the
boundary conditions. For this region, the buckling coefficient can be
written in the following functional form:

ke = £(Zp,r/t,L/r,r/b) (66)

For the cylinder, the first three parameters appeared. For the curved
plate, an additional parameter r/b reflects the additional set of
boundaries.

Attempts were made to synthesize the available test data according
to the different parameters of equation (66). Since it is likely that
a long wide plate of appreciable curvature would buckle in the diamond
pattern observed in axially compressed circuler cylinders, it appeared
reasonable to expect b and L +to influence ke as they approached
the size of a diamond buckle. For example, if the plate length were to
be decreased while maintaining the rest of the plate geometry constant,
the circumferential plate edges would begin to confine the buckle pattern
until eventually only one buckle would remain lengthwise while several
“might still exist circumferentially. Any further reduction in plate
length might be expected to cause a transition from one diamond buckle
to a single sine curve representative of plate behavior. Thus, at the
transition geometry a peak would be expected in the plot of k¢

against Zp.

The presence of peaks in the data may be demonstrated in a general
fashion by plotting all the test data in terms of ke as a function of

Zy, ‘together with the compressed-cylinder semiempirical curves of fig-

ure 6 as shown in figure 38(b) for r/t = 300, 500, and 1,000. Then the
magnification factor p = kCexp/kCemp is plotted for all the data as a

function of Zp as shown in figure 39. This plot reveals that peaks

exist at approximately the same values of .Z as were found for axially
compressed circular cylinders. However, it is evident that the peaks
‘are not so positively defined as they are for compressed cylinders. The
scatter in the data is large, yielding magnification factors ranging
from 1 to % or more at the same values of Zp for plates with the same

values of r/t.

Further evidence of the existence of a magnification factor in the
transition region is shown in figure 40 which contains envelopes of the
data obtained by Crate and Levin (ref. 61), Cox and Clenshaw (ref. 60),
Jackson and Hall (ref. 62), and Schuette (ref. 65). Peaks are observed
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at Zp values of approximately 5, 50, and 500. The first peak was not

observed in the cylinder data of figure 9 although the second and third
roughly correspond.

Attempts to define quantitatively the behavior of curved plates in
the transition region were unsuccessful. For example, each point in
figure 39 was marked with the pertinent L/r and r/b values. Attempts
to draw contour lines through the data for constant values of L/r, r/b,
or L/b did not reveal any consistent trend.

In general, therefore, it may be concluded that there is consider-
able evidence for the existence of a magnification factor. However, the
inability to obtain consistent trends for the various geometric parameters
used precludes any recommendations for design and analysis purposes.

Initial Eccentricity

Jackson and Hall measured the initial surface irregularities of 18
of the plates which they tested (ref. 62). Ordinarily this information
might be used to determine U for long specimens. However, the values
of Zy, for these plates were in the lower transition range close to the
flat-plate limit and consequently would be of little value in analyzing
curved plates of large values of Z, on which the relation of C

against r/t is based.

Cox and Pribram utilized these data to construct curves of buckling
coefficient as a function of Zp for different values of ay, basing the

construction of the curves on the semiempirical approach which they used
to derive a general theory for the behavior of axially compressed curved
plates (ref. 66). However, the use of these curves requires a prior
knowledge of the magnitude of ag, which seldom is available to designers.

Inelastic-Buckling Behavior

As was demonstrated in the preceding sections, a curved plate with
a large value of Zp buckles in a diamond pattern at a stress equal to
that of the corresponding cylinder. This would appear to imply similar
correspondence in the inelastic behavior. It was shown for cylinders in
the section "Circular Cylinders Under Axial Compression” that the axial-
compression plasticity-reduction factor, when applied to the elastic-~
buckling-stress expression, yields the inelastic-buckling stress for a
long axially compressed circular cylinder

Oop = NCEL/T (67)



58 NACA TN 3783

where

1/2
Oor Eg (1 - Ve2) Eg

" CCE T E(1- 2 Es (68)

In this section the inelastic test data of Schuette on magnesium-alloy
curved plates (ref. 65) are compared with equation (68) to determine
whether correlation exists.

It was assumed that the value of U for all the test data of
Schuette was constant. The relation between C and r/t was then
determined in the inelastic range by fitting a curve through the elastic
data, as shown in figure 41, utilizing the theory of Donnell and Wan
(ref. 20) to extend this curve to low values of r/t. It can be observed
that for this case U is 0.000092. To aid in locating this curve, it
was noted that for r/t = 300 a value of C = 0.36 fits the test data
of Schuette shown in figure 38(a).

In figure 42, test data and theory are compared for the three mag-

nesium alloys Ma, Mh, and J-lh. The plasticity-reduction factor is
plotted as a function of stress. The theoretical value of n was
obtained from stress-strain curves presented by Eastman, McDonald, and
Moore (ref. 69). The experimental value was found by computing the ratio
of experimental buckling stress to CEt/r, as shown in equation (68).
As may be seen from figure 42, the agreement is good. The secant-modulus
plasticity-reduction factor is also shown in these figures for comparison.
Schuette originally recommended that it be used in the inelastic-buckling-
stress equation

Oor = 0.L42Egt/r | (69)

in which the average value of C = 0.42 was used for all the test data.
However, better agreement is obtained with the factor for axially com-
pressed circular cylinders, particularly for the alloy Mh, for which the
scatter is small, by using the curve of figure 4.

Effect of Normal Pressure
Application of pressure to the concave face of a curved plate

raises the axial-compressive stress that the plate can sustain before
buckling. Rafel and Sandlin (ref. 70) and Rafel (ref. T1) performed
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tests on curved plates under this load combination, the results of which
may be correlated with the interaction equation

2

Re“ + Ry =1 ) (70)

where Rp is the ratio of the applied internal pressure to the external

pressure which would buckle the cylinder of which the plate is a section
(see fig. 43).

SPHERICAL PLATES UNDER EXTERNAL. PRESSURE

The buckling behavior of externally pressurized spherical plates 1is
similar to that of axially compressed circular cylinders and curved plates
in two ways. First, linear theory predicts the same buckling stress for
externally pressurized spheres, long compressed cylinders, and long curved
plates. Second, test data are considerably below the results of linear
theory and large-deflection theories have been used to obtain improved
agreement. Consequently, it appears reasonable to correlate test data
on spherical plates in the same manner as used previously for cylinders
and curved plates.

For long cylinders, the theory of Donnell and Wan (ref. 20) 1led to
the determination of the buckling stress as a function of r/t. It was
thus possible to construct a relationship for C (in the modified clas-
sical buckling-stress equation) as a function of r/t for axially com-
pressed circular cylinders which involved selecting a numerical value
for the unevenness factor U. For a value of U = 0.00025, the theoret-
ical curve of C merged with that derived empirically by Batdorf. This
matching of theory with test results was necessary because of the lack
of measurements of initial imperfections of the cylinder and curved-plate
test specimens.

For spherical plates, on the other hand, experimental data are avail-
able on the magnitude of the geometrical imperfections although a theory
for the influence of such imperfections is lacking. By using the param-
eters of the Donnell-Wan theory, however, it was possible to establish
from experimental data a reasonable estimate of the effect of geometrical
initial imperfections.

Historical Background
Timoshenko (ref. 4) reported linear analyses of the buckling of

spherical shells under external pressure by Zoelly (ref. 72), Schwerin
(ref. 73), and Van der Neut (ref. T4), who obtained the same expression
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for this case as for a long axially compressed circular cylinder. As

in the case of the axially compressed circular cylinder, a nonlinear
theoretical investigation by Tsien (ref. 12) revealed the presence of
equilibrium buckle configurations at large deflections for a spherical
shell under external pressure. The theory permitted the calculations of
both the upper buckling load (which occurs during the loading of the
shell) and the lower equilibrium load utilizing the energy criterion pre-
viously employed on axially compressed cylinders. These theoretical
values are in agreement with the trend of the data obtained from tests

on clamped spherical plates under external pressure.

Additional tests were recently conducted by Kaplan and Fung to
determine whether the classical criterion or the energy criterion is
applicable to the buckling of externally pressurized spherical plates
(ref. 75). They concluded that the classical criterion is applicable
to very shallow plates, while the deeper plates tend to buckle according
to the energy criterion.

Initial Imperfections

In 1934 Donnell postulated the initial imperfections of a circular
cylindrical shell as the reason for values of the experimentally observed
axial-compressive-buckling stresses being low compared with the classical
theoretical value of 0.6Et/r for long cylinders (ref. 8). Subsequently,
Donnell and Wan extended this concept, utilizing the large-deflection
approach developed by Donnell together with a relation between initial
imperfection and the buckle geometry of the cylinder (ref. 20). This
involves a parameter which Donnell and Wan term the "unevenness factor'
of the cylinder.

More recently Loo extended this approach to include torsional buckling
(ref. 76) by redefining initial imperfection in a form slightly different
from that utilized by Donnell and Wan:

g

L.L

12

ag = UO ____—(-J—'-> (71)
Ly + Lo\t

In this expression a, is the initial imperfection and Iq and Lo

are the wave lengths of the buckle measured axially and circumferentially
on the cylinder. The value of ag 1s selected to include not only geo-
metric imperfection, but, also theoretically, residual stresses, material
anisotropy, and loading eccentricities. Numerically, it is the ratio of
the amplitude of the equivalent imperfection sine wave to the thickness
of the wall of the cylinder.



NACA TN 3783 61

By properly selecting Lj and L2, equation (71) can be applied to

the case of externally pressurized spherical plates and cylinders as well
to the other cases examined by Loo. This suggests the possibility of
generalizing equation (71) to permit an overall evaluation of initial
imperfection. This is done by first recognizing that ILj and Lo

usually are proportional to one another in any particular case and that
either of these two dimensions can be expressed as some proportion of a
geometric parameter of the structure under consideration, such as the
radius of the cylinder surface or the diameter of the spherical-plate
aperture. Symbolically defining this dimension as X, and including the
proportionality constants in a single symbol K, equation (71) becomes

ao = Up(KX/t)8 (72)

The amount of initial imperfection is fixed for a particular structure
manufactured in a specific manner, and the magnitudes of X and k are
reasonably well known for a specified type of loading. The unknown quan-
tity in this expression is then Uy. Donnell found it necessary to deter-
mine Uy 1in order to fit the theory to the test data. In this report it

is determined experimentally.

The expression for Uy 1s obtained by writing equation (72) in the
form

Uo = ao(KX/t)™8 (73)

It is apparent from this relation that large buckle wave lengths lead to
small values of Uy and small lengths lead to large values. Actually,

the quantity (K){/t)'g . is a measure of the sensitivity of U, to the

wave-length pattern and, consequently, to the type of loading. If this
is termed the "sensitivity factor" S, then

s = (t/kx)€ (74)

and equation (73) becomes

Uo = 865 (75)

This general expression relates unevenness to initial imperfection and
sensitivity to this imperfection in terms of the buckle wave lengths.
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Returning to equation (71), it is seen that in general

g
{11 + Lo)t LlLZLI;)t] (76)

Donnell and Wan (ref. 20) and Loo-(ref. 76) fourd satisfactory agreement
of the general theory with test data when g 1s chosen equal to 2. For
spherical plates, it appears likely that L, = Lo due to axisymmetry.

Thus for this case

s = (2t/11)° (77

If the diameter of the spherical plate d is selected as X, and
if there are n buckle half waves across the cap, then 1Ij = d/n; equa-

tion (77) becomes

5 = (2nt/d)? (78)

and Uy follows from equation (75) in the form

Uo = ao(2nt/d)? (79)

Analysis of Initial-Imperfection Data

Donnell and Wan presented a theoretically derived relation between
Ucr/Ucl and Ubr/t for axially compressed circular cylinders, from
which the relation between C and r/t is readily obtained for a spe-
cific value of Uy (ref. 20). The data on spherical plates would be

most effectively evaluated, therefore, by deriving the curve of C as
a function of r/t empirically. The manner of accomplishing this follows.

Kaplan and Fung measured the initial profile of each spherical-plate
specimen and recorded the deviation from a sphere through the pole of the
plate (ref. 75). This permits computing a value of ay for each plate

which is equal to the maximum initial departure taken as a fraction of
the spherical-plate thickness. Thus one quantity in equation ('75) can
be found. It now remains to determine the numerical value of the sensi-

tivity factor.
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This factor S for the spherical plates is expressed in equation (78).
In this relation the only unknown quantity is the value of n, the number
of buckle half waves across the base diameter of the plate. This is deter-
minable from Kaplan and Fung's data, in which the buckle shapes are pre-
sented for several cases. The width of the buckle was obtained by pro-
jecting the buckle shape down to the datum line used to measure the plate
profile. The number of buckles is related to 23 as shown in figure Lk

for the points taken from Kaplan and Fung. For values of 2Z3 less than
L2 there is one buckle at the pole of the plate. For 42 < Z3 < 85 there
are two buckles equally spaced about the pole, and for Zg > 85 there

are three buckles, the center one of which occurs at the plate pole.

Thus the few points displayed in figure 44, together with this informa-
tion, do not permit precise determination of n for each specimen. How-
ever, since the principal purpose of this section is to compare the empir-
ical trend with Donnell's theory, this purpose is served satisfactorily

by drawing a straight trend line through the data in figure Lk.

When this is done, n can be found for each specimen, after which
S can be found from equation (78). Then Uy follows for each specimen,

and Ubr/t can be calculated. This is then plotted as a function of
Gcr/ocl as shown in figure 45, utilizing the relations

Perr/2t (80)

Ocr

Il

0oy = 0.6Et/r - (81)

which yield
0cr}/ccl = Pcr(r/t)%/él'gE) (82)

The empirical plot of C as a function of r/t can now be made
when the average value of U, is determined for the caps. This is found
to be 2 X lO‘)Jr from table 7, which is so close to the value of 2.5 X lO"LF
found in the section "Circular Cylinders Under Axial Compression" for
axially compressed circular cylinders that this latter value will be used
for purposes of consistency. Little difference will exist between the
two curves. Figure 46 contains the plot of C as a function of r/t
together with the test points obtained by using C = ccrr/Et. The agree-

ment appears to be reasonable.
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On the basis of the agreement of the empirical curve with the average
of the test data, it may be inferred that the geometric portion of the
total initial imperfection controls the average behavior of the spherical
plates while the other factors such as residual stress may contribute to
the scatter observed in the test data.

It may also be inferred that the concept of initial imperfections
and the parameters selected by Donnell and Wan (ref. 20) in general pro-
vide a reasonable basis for evaluating the buckling behavior of curved
plates and shells, although the theory required and the interpretation
of the sensitivity parameter S may be different in each case. Further
research is indicated to determine theoretically the empirically derived
relation shown in figure 45. In this connection, Klein showed correla-
tion between Ogp/0c1 (as a function of r/t) and an imperfection param-

eter that is essentially a different form of ag (ref. 77).

Compressive-Buckling Coefficients

From figure 46, it is now possible to construct empirical curves of
kp as a function of Zg in the manner of figure 5 and to compare them

with the test data for externally pressurized spherical plates. This

has been done in figure 47, in which the two curves for r/t equal to

200 and 2,000 have been drawn, since all the data lie within this range.
The value of k for the circular flat plate is 6.0. Because of the
flatness of the curve of C at large values of r/t, the spacing between
the two lines is small compared with that shown in figure 6 for axially
compressed circular cylinders. It may be seen that the agreement of the
test data with the empirical curves is good. A peak appears to occur

at Zg = 50; however, the data are too few to substantiate it conclusively.

The results reported by Tsien pertain to values of r/t greater
than 1,000, with the experimental buckling coefficients a large percentage
of the classical value (ref. 12).

Numerical Values of Buckling Stress

For computation of elastic-buckling stresses of externally pres-
surized spherical plates, the equation

Knt O e
o s ) @
12(1 - ve?)
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may be used for all values of Zg. When 2Zg 1s large and the plate

approaches pure sphere behavior, it is permissible to use equation (30)
to find the buckling stress. The curves to be used in conjunction with
these equations may be found in figures b6 and 47.

Effects of Plasticity

The plasticity-reduction factor for a sphere under external pressure
was theoretically derived by Bijlaard (ref. 24). When Poisson's ratio
in the inelastic range is chosen equal to the fully plastic value of 0.5,
the factor is equal to that found by Gerard for axially compressed long
circular cylinders (ref. T), '

1/2
_Es|(3 - ve?) By (84)
E (1 - v2) Eg

This factor is'applicable only to spherical plates of large 2Zg values

for which the behavior is primarily that of a sphere with little flat-
plate influence. Consequently, the buckling-stress equation to be used
is that given by equation (67)-.

CURVED PLATES UNDER SHEAR

The usual convention adopted for plates loaded in shear requires
that the b dimension be the shorter side. When this is applied to
curved plates some ambiguity arises, since such plates may be curved
either along the short edge or along the long edge. For clarity, there-
fore, a long curved plate is defined as one in which the long side is
parallel to a generator of the cylinder of which the plate is a segment,
and a wide plate is defined as one in which the long side is perpendic-
ular to the cylinder generators. Since the generators of a right cir-
cular cylinder are parallel to the axis of the cylinder, these edges
have been referred to as the axial and circumferential edges, respectively.

Historical Background

Leggett analyzed the problem of shear buckling of long strips of
small curvature with both simply supported and clamped axial edges
(ref. 37). It was assumed that motion in both the axial and circumfer-
ential directions was prevented along the edges of the strips. Kromm
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analyzed the same problem for simply supported edges without restraining
the motion normal to the axial edges of the plate and arrived at lower
buckling stresses. These results agree with the subsequent work of Batdorf,
Schilderout, and Stein which was based on the use of Donnell's equation
(refs. 67 and 78). They investigated the buckling of a long curved plate
under shear with both simple support and clamping along the axial bound-
aries for a complete curvature range. They also investigated wide curved
plates (ref. 79).

Good correlation has been obtained of theory with the experimental
data of Rafel (ref. 80), Rafel and Sandlin (ref. 70), Moore and Wescoat
(ref. 41), Kuhn and Levin (ref. 81), and Chiarito (ref. 82). Further,
the effects of internal pressure were investigated theoretically by Brown
and Hopkins (ref. 83), who obtained fair correlation with the test data
of Rafel and Sandlin.

Test Data

The experimental results appear together with the theoretical curves
of Batdorf, Stein, and Schildcrout (refs. 67, 78, and 79) in figure L48.
Somewhat better correlation is apparent for curved plates with small
initial eccentricities than for those with larger eccentricities. A
rather detailed discussion of the test data is included in the report of
Batdorf, Schildecrout, and Stein.

The results shown in figure 48(a) were obtained from plates which
snap-buckled or in which the buckling stress was measured in a manner
that tended to minimize the effects of initial eccentricity such as by
the selection of the top of the knee of a torque-twist plot. The data
of figure 418(b) were obtained primarily from determinations of buckling
torque by means considerably more sensitive than were used for the data
of figure 48(a). For example, Kuhn and Levin used optical strain gages
to plot sheet strain as a function of load and selected the point of
departure from a straight line as the torque at which buckling was pre-
sumed. to occur. In this latter group one snap buckle occurred.

In general, the data agree fairly well with the theory. The results
of Kuhn and Levin for strips of large width lie as close to the cylinder
curve as some of the data reported in the section entitled "Cylinders
Under Torsion." This tends to substantiate further the use of the linear
theory for torsional buckling of cylinders. It should be noted in fig-
ure 48(a) that the buckling coefficients for Zp = O are equal to those

reported in reference 1 for flat plates loaded in shear.
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Behavior of Curved Plates Buckling Under Shear

An infinitely long rectangular plate with transverse curvature will
buckle under shear loading at a stress greater than the flat plate of
the same developed width as a result of the restraint of radial deflec-
tion due to the curvature. Curves of buckling coefficient appear in
figures 49(a) and 49(b) as a function of Zy, for the infinitely long
curved plate with both clamped and simply supported edges with no restraint
to motion normal to the axial edges. The values of the buckling coeffi-
cients for these two cases have a constant ratio for all values of Zy.

This suggests that for intermediate values of edge rotational restraint,
the buckling coefficient could be determined with the aid of figure 25(a)
of reference 1, in which kg is plotted as a function of edge rotational
restraint for an infinitely long flat panel.

As the plate length becomes relatively short the buckling stress is
influenced not only by the axial boundary conditions but by the circum-
ferential conditions as well. When the length becomes small compared
with the plate width, the curved plate behaves like a short cylinder, or
like a flat plate, which is the limiting case of a short cylinder. In
this case, the axial boundary conditions no longer influence the buckling
stress of the curved plate and the circumferential boundary conditions
govern.

In this transition from infinite to zero length, two a/b ranges
are defined depending upon whether the plate is long or wide. The square
plate (a/b = 1) marks the division between these ranges. In the wide-
plate range the limiting buckling behavior is that of the cylinder, while
in the long-plate range the infinitely long plate is at the other limit.
The relation between buckling coefficient and Zp may be seen in fig-

ures 49(a) to 49(d). It should be recalled that, because of its defini-
tion, a/b is always greater than 1, and the meanings of kg and Zy

change at a/b = 1. It is evident from the curves that wide plates tend
toward cylinder behavior more rapidly, as a/b increases, than do the
long plates toward the behavior of the infinitely long plate.

Numerical Values of Buckling Stress
On the basis of the good agreement between data and theory for curved

plates loaded in pure shear, the curves presented in figure 49 may be used
in conjunction with the buckling-stress equation

Ter = kg F <E>2 (85)
12(1 - ve2) \P
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For small values of 7, equation (85) becomes the flat-plate equation

and kg may be found from the charts presented in Part I of the Handbook
(ref. 1).

The buckling stress for a long curved plate loaded in shear has been
found by Batdorf, Stein, and Schildcrout (ref. 79) to be of the form

) ksn®E 2 1/ &
Ter 22 - ve2)\b> (Zp) (86)

where Zy > 30. The ratio of the curved-plate-buckling stress to the
corresponding flat-plate-buckling stress has been found to be O.B?(Zb)l/2

for Zp > 30, for both simply supported and clamped edges. Utilizing

this ratio for plates with any elastic rotational restraint, the buckling
stress of a curved plate loaded in shear with Zp > 30 can be found from

1/2
TCI' = 0-57Tcrflat plate(Zb) / (87)

The critical shear stress of the long flat plate may be determined from
reference 1.

Plasticity-Reduction Factors

The shear secant modulus was shown to be the appropriate plasticity-
reduction factor for long, flat, rectangular plates in shear (ref. 1)
and for long circular cylinders in torsion (see section "Cylinders Under
Torsion"). It is reasonable to suggest, therefore, that the shear secant
modulus may be applicable to long plates with slight curvature and to
wide curved plates which tend to behave as long cylinders and long flat
plates, respectively.

Effects of Internal Pressure

Brown and Hopkins (ref. 83) solved the classical equilibrium equa-
tions to determine the effect of radially outward pressure upon the shear-
buckling stress of curved panels and obtained fair agreement with test
data of Rafel and Sandlin (ref. 70). ‘
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The data also correlate well with the parabolic interaction curve
used for the effect of internal pressure upon cylinders in torsion and
upon curved plates in axial compression. For curved plates in shear,

2

R® + Ry = 1 (88)

Agreement of the test data with this relation is shown in figure 50,
which is of the form used by Crate, Batdorf, and Baab to correlate the
data for cylinders buckling in torsion under internally applied pres-
sure (ref. 45). '

CURVED PLATES UNDER COMBINED SHEAR AND

LONGITUDINAL COMPRESSION

By use of a set of equilibrium equations, Kromm investigated the
critical loading for a long curved plate with simply supported edges
subjected to the simultaneous application of shear and longitudinal com-
pression (ref. 53). With the aid of Donnell's equation, Batdorf,
Schilderout, and Stein extended this analysis to long curved plates with
clamped edges (refs. 67 and 84).

As indicated in the preceding section, a long curved plate under
shear buckles at a stress in close agreement with the theoretical value
derived from linear theory. However, as shown in the section "Curved
Plates Under Axial Compression,’ the action of axially compressed long
curved plates departs appreciably from the predictions of linear theory.
Consequently, a linear analysis of buckling under the combination of
these loads would be unconservative. Batdorf, Schilderout, and Stein
recognized this and, therefore, recommended the use of empirical data to
determine the buckling stress of the curved panel under axial compression.

Batdorf, Schildcrout, and Stein derived a theoretical interaction
equation by use of linear theory in the form

Re® + Ry = 1 (89)

in which the axial stress may be either tension or compression. Since
compression stress would have the positive sign in this convention, it
would be necessary to use the negative sign for tension.

The stress ratios are defined as the ratio of the stress in the
long panel at buckling under combined loading to the buckling stress
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under simple loading. In order to account for the discrepancy between
theory and experiment for axial-compressive loading, Batdorf, Schildcrout,
and Stein suggested using the empirical instead of the theoretical value
of buckling stress which may be found in the section "Curved Plates Under
Axial Compression.” When this change is made, equation (85) may be used
to compute critical combinations of loading for this case. Comparisons
of test data with the parabolic interaction curves for simply supported
curved plates under combined shear and axial compression are given in

figure 51.

Research Division, College of Engineering,
New York University,
New York, N. Y., July 20, 1955.
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APPENDTX A
APPLICATION SECTION

Procedures for numerical computation of buckling stress of curved
plates and shells are summarized in this appendix. For information on
details of stress-strain curves, Poisson's ratio, and the effects of
cladding, reference 1 should be consulted.

In the summaries below, references are made to the ranges of behavior
of the components discussed. The geometric parameters are displayed in
figure 4, while sketches appear in figure 5 depicting the influence of
geometry upon the buckle pattern for an axially compressed cylinder.

Compressive Buckling

Circular cylinders.- In the short-cylinder range (Lg/rt < 1), the
flat-plate equation may be used:

" k_n°F 2 '
c £
c... =1 ( ) (A1)
T 12(1 - ved) L

For values of mn and k., the charts in reference 1 for axially com-
pressed flat plates may be used.
In the transitidn-length range (l < Lg/rt < 100> equation (A1) may

be used for elastic stresses, employing figure 6 to determine ko. If

desired, use may be made of the magnification-factor chart of figure 9
to account for end effects.

In the long-cylinder range (Lz/rt > lOO), the modified classical
buckling-stress equation (67)

Oop = nCEt/r (67)

may be used, where C can be obtained from figure 7.
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The plasticity-reduction factor for this case is equation (75)

) 1/2

(75)
E |Bs @.- v2)
which is given in nondimensional form in figure 1l. In this chart
€op = Ct/r (32)

Elliptic cylinders.- Timoshenko recommends using circular-cylinder-
buckling data to compute the buckling stress of an elliptic cylinder.
The pertinent radius of curvature occurs at the ends of the minor axis
and is equal to ae/b.

Curved plates.- Curved plates of large radius (bg/rt < l) may be
analyzed as flat plates using equation (A2) together with values of ke
and 1 from reference 1 for axially compressed flat plates:

Oy = k, "E <:G_> 2 : (82)

For elastic stresses in the transition-length and transition-width
ranges, figure 38(b) may be used to find k. in conjunction with equa-

tion (A2). For curved plates of large radius (bz/rt > 100) equations (67)
and (75) are valid, and the nondimensional buckling chart of figure 1l may
be used.

For the effects of internal pressure the interaction equation
R, + R, = 1 (43)
¢ *Rp=

may be used, in which Rp is the quotient of the applied internal pres-
sure and the critical external pressure that would buckle the cylinder.
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Bending Buckling of Long Cylinders

Circular cylinders.- For long circular cylinders that buckle
elastically

Ocp = Cpft/T | (34)

where C,, which contains a gradient factor of 1.3, may be found from
figure 18.

To compute inelastic-buckling stresses of circular cylinders in
bending, figure 25 may be used.

Elliptic cylinders.- For long elllptlc cylinders that buckle elas-
tically proceed as outlined in the section "Cylinders in Bending,"
employing figures 18, 19, 21, and 22.

Torsional Buckling of Cylinders

Circular cylinders.- For short cylinders (L/r <10 (t/r 1/2> the
flat-plate equation

k. 5°F 2
Top =1 ght > (E) (Ak)
12(1 - v.2)

may be used employing values of 1 and kg from reference 1 for flat
plates in shear. '

1l/2 2
For transition-length cylinders @O(t/r) / <Lfr < B(r/t)l/ ) either
the general buckling-stress equation

(85)

T kn®E [t )2

er =1 12(1 - ve%\i

may be used employing figure 26 to determine kt or one of the following
equations may be employed: For clamped edges:

o 0.93x°E 1\ /% p\1/2 '
cr L 12 (l - v62>5/8\r> (L> (A6)
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For simply supported edges:

_ 0.850°E _ (£\5/%/p\ 1/2
Ter =1 = (AT)
i 12 (l - Ve2)5/8( > <L>
For long cylinders (L/r > B(r/t'l/2>:
0.272E (L>5/2 (49)

Ter = 1 (l ) v62>5/4

utilizing 1 from equation (A8) or the nondimensional buckling chart
of figure 32.

The stresses obtained from equations (A4) to (A7) are approximately
16 percent higher than the average of the test data. For conservatism
this correction factor may be used.

The plasticity-reduction factor is

P

=T\ (A8)
The nondimensional buckling chart of figure 32 may be used with
€or = Top/NE (52)
The effect of internal pressure may be included by using the
interaction equation
2
Ry + By =1 (53)

Elliptic cylinders and D-tubes.- The data for circular cylinders
in torsion may be used providing that the semimajor axis of the elliptic
section is chosen equal to r. Then




NACA TN 3783 >
71, = L2<; - veg>l/2/at (A9)

Shear Buckling of Curved Plates
For plates of large radius flat-plate buckling-stress equation (Al)
is applicable. For values of kg and n Part I of the Handbook
(ref. 1) may be used.

For transition-length plates

kﬂgE t 2
Ter © 12(1S- v62><5> (85)

for which kg may be found in figure 49.
For b2/rt > 30

1/2

= 0. 8
Ter '37(Zb) Tcrflat plate (&7)

For the effects of internal pressure, the interaction equation
R°+R =1 (88)
8 Rp - .
may be used.

Buckling Under External Pressure

Circular cylinders.- For short and transition-length cylinders

(Lg/rt < lOO) which buckle elastically under radial pressure

L 5fB w2
e - vee>\1>

where figure 35(a) may be used to find ky.
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Under hydrostatic pressure

oo = kpﬂgE <E>2 (410)

cr 12(1 - Ve2> L
where figure 35(b) is used to find kp.

.2
For long cylinders (lOO %< (L/r) < 5r/t> the buckling stress may

be found from either equation (55) or equation (A10) and is essentially
the same for both cases. It may also be computed using

o = 0.93E(t/r)5/2(r/L) (A11)

cr

For very long cylinders (CL/r)e > 5(r/t)> under either radial
or hydrostatic pressure

0.25E 2
o TN LA ()

in which

- (_1__7)< 3 2 > (59)

Spherical plates.- In all dismeter ranges, for elastic buckling,

) kanE 2>(E>2 (85)

12(1 - ve

o
cr

where k, may be found in figure 47.

For plates with de/rt > 100, the modified classical buckling-stress
equation.

Oop = nCEt/r (67)

may be used in conjunction with figure 46 and n from equation (75).
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Buckling Under Combined Loads

Circular cylinders.- See table 5 and figures 36 and 37 for inter-
action equations and stress-ratio relationships.

Curved plates.- For curved plates under combined axial compression
and shear, with 10 < 7, <100 and 1 <a/b <3,

Rg“ + Ry = 1 (89)
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TABLE 1

85

MEMBRANE STRESS STATES WHEN BUCKLING OCCURS FOR VARIOUS CASES

spherical plate

Superimposed Correlation
Element Loading transverse of test data
membrane stresses|and linear theory
Column Compreséion None Satisfactory
Flat plate Compression, Tension Satisfactory
Shear
Bending
'Cylinder and Compression Compression Unsatisfactory
cylindrical Bending Compression Unsatisfactory
plate Torsion or shear Tension Satisfactory
Lateral pressure Tension Satisfactory
Sphere and Tateral pressure Compression Unsatisfactory
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TABLE 2

NACA TN 3783

RATIO OF BENDING- TO AXIAL-COMPRESSIVE-BUCKLING STRESS FOR MATCHED

CIRCULAR CYLINDERS

[Data of Donnell (ref. 8); average y for all tests, 1.461

Steel cylinders Brass cylinders
Number | 7 = %ber/%cr | Number | 7 = %ber/%cr
(2) (2)
1 1.36 1 1.49
2 1.10 2 2.62
3 1.18 3 1.18
L .96 L 1.99
5 1.50 5 1.95
6 1.69 6 2.26
7 1.02 7 1.28
8 1.67 8 2.18
9 .86 9 1.29
10 1.04 10 1.34
11 1.37 11 _.80
Av. 1.25 Av. 1.67

ol bending-buckling stress; o compressive-
Doy ? “Cer?

buckling stress.
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‘TABLE 3

DATA FOR CIRCULAR-ARC SECTIONS IN BENDING

[}ll specimens were fabricated from 7075-T6 aluminum
alloy and were 120 in. loné]

Specimen H/t Hfc r/t 71, Oexp [ Semmp
1 3.3 0.0k 667 146 1.43
2 7.6 .08 333 293 1.16
3 10.5 .10 250 390 | 1.15
TABLE L

GRADIENT FACTORS FOR CIRCULAR-ARC SECTIONS

Cy C? 7 =0 /02
(from table 3) (from fig. 7,
using U = 0.00015)
0.408 0.270 1.51
331 .250 1.32
.329 .395 .83
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TABLE 5
INTERACTION EQUATIONS FOR CIRCULAR CYLINDERS

UNDER COMBINED LOADINGS

Loading Interaction Applicable range
equation (a)
Axial compression|r + Ry = 1 All values of Zj, all edge
and bending ¢ restraints
Using theoretical o,, &and Tsp,
Zy, <1, S8

Axial compression|g th =1
c

and torsion Using empirical ogppr and Tep,
1< 2 < 7.7(x/t)2, 88

5 < Zp, < 7.7(r/t)2, C

Using theoretical T
Axial tension and O.4R. + Ry = 1 -1 <R, <O

cr?

torsion 30 < ZL < 7.7(r/t)2
both SS and C
Bending and R 1.5 +R 2 _ 1 |Al1l values of Zy, all edge
torsion b t restraints

aSS, simply supported edges; C, clamped edges.
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TARLE 6
PLATE DIMENSIONS FOR TEST SPECIMENS OF
VARIOUS INVESTIGATORS
[All dimensions are in inchea
Cox and Crate and Jackson Schuett
Dimension Clenshaw Levin and Hall chue 6e
(ref. 60) (ref. 61) (ref. 62) (ref. 65)
L oL ol 18 3 to 25
r 18, 36, ® | 1l.k to 121 o, 48, o 3.25 to 21
and oo
b 4, 6, 8, 10, ag.7 3 to 7 3.2 to 26
12
t 0.018 to 0.067]0.065 to 0.128]0.018 to 0.039

0.015 to 0.248

aAverage value.
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TABLE

NACA TN 3783

TMPERFECTION PARAMETERS FOR TEST SPECIMENS

OF KAPLAN AND FUNG (ref. 75)

Specimen | r/t ccr/ccl i/t ao Uy
1 316 | 0.u64 635 | 0.249| 2.17 x 107}
2 319 Rivel 645 A6l 3.78
3 309 .439 635 3581 3.22
i 219 .373 640 .592 | 6.25
5 211 Dk 635 .363 | 3.93
6 628 .708 1,210 .050 17
7 602 .56% 1,210 .156 .55
8 517 .521 1,230 .184 T3
9 38l .587 1,160 .118 .65

10 382 517 1,250 .176 .99
11 372 448 1,250 .386 1 2.30
12 851 .262 2,050 .202 8L
1% 691 . 369 2,000 354 | 1.3k
14 732 .315 2,050 3251 1.2k
15 615 .356 1,950 6ok 1 3.15
16 591 Lo2 1,950 2021 1.hkk
17 621 .332 2,220 B2h | Lobs
18 207 Rite)t 635 L03 | 4.39
19 186 b2 635 .136 ] 1.60
20 549 .654 | 1,160 .082 .32
21 359 .556 1,190 L1k .67
22 722 379 2,000 3231 1.17
23 606 . 554 1,950 .148 .71

82.00

aAverage value.
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theory using values of C from figure 7.
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Figure 16.- Test data for long circular cylinders in bending.
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Figure 17.- Test data of Lundquist for long circular cylinders in axial
compression and in bending (refs. 14 and 29).
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Figure 18.- Test data for long elliptic cylinders in bending.
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Figure 19.- Location and magnitude of critical radius of elliptic cylinder.
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Figure 20.-~ Comparison of test data on elliptic cylinders with empirical
curve for £/t = 500. For test data, 250 < F/t < 750.
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Figure 2%.- Method for determining location and magnitude of critical
radius of curvature.
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(a) Theoretical variation based on 6061-T6 aluminum-alloy data of figure 2h.

Figure 25.- Variation of (M/sc) /o for long circular cylinders in bending.
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Figure 27.- Enlargement of a section of figure 26 on a linear scale.
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Figure 28.- Buckling stress as a function of buckle wave depth for cir-
cular cylinders in torsion. Curve taken from test data.
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Figure 30.- Comparison of test data with theoretical plasticity-reduction
factor for long cylinders in torsion.
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Figure 33.- Effect of internal pressure on torsional-buckling'stress of
long cylinders. Test results are from reference L43.
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(a) Combined bending and compression.

Figure 36.- Interaction curves and test data for combined stresses on
circular cylinders. Test data from Bruhn (ref. 54).
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(b) Combined compression and torsion.

Figure 36.- Continued.
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Figure 36.- Coneluded.
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Figure 37.- Interaction curves for combined compression, bending, and
torsion on circular cylinders of different proportions.
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(a) Comparison of test data with linear theory.

Figure 38.- Comparison of test data with theory for axially compressed
curved plates.
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Figure 3%9.- Summary of magnification factors for axially compressed curved
plates of figure 38(b).
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Figure 41.- Theoretical variation of C as a function of r/t for U = 0.000092 and comparison
with elastic data of Schuette (ref. 65) for axially compressed curved plates.
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Figure L43.- Effect of internal pressure on axial-compressive-buckling stress of curved plates.
Test data are from Rafel and Sandlin (ref. 70).
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Pigure 45.- Empirical curve fitted through spherical-plate test data of
Kaplan and Fung (from ref. 75) to obtain relation between Gcr/ocl

and Ugr/t. o, = 0.6Et/r.
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(a) Long simply supported plates.

Figure L49.- Shear buckling coefficients for various curved plates.
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(b) Long clamped plates.

Figure 49.- Continued.
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(c) Wide, simply supported plates.

Figure 49.- Continued.
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(d) Wide clamped plates.

Figure 49.- Concluded.
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Figure 50.- Effect of internal pressure on buckling of curved plates in
shear. Test data from Rafel and Sandlin (ref. 70).
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Figure 51.- Comparison of test data with parabolic interaction curves
for simply supported, curved plates under combined shear and axial
compression. :
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